

SCHOOL OF INTEGRATED CLIMATE AND EARTH SYSTEM SCIENCES

Long-term evolution of heat fluxes at the Arctic sea-ice edge

Julia Steckling¹, Markus Ritschel¹, Johanna Baehr¹, Dirk Notz¹

April 28, 2023

1. University of Hamburg, Institute for Oceanography

Previous studies

Surface energy budget (SEB):

SEB = $LW \downarrow - LW \uparrow + SW \downarrow - SW \uparrow$ + latent + sensible + conductive

Assumption: SEB stays constant.

 $\Rightarrow \Delta SEB = 0 = \Delta LW_{in} + \Delta SW_{net}$

Methods

Observed Arctic sea-ice loss directly follows anthropogenic CO₂ emission

Dirk Notz^{1*} and Julienne Stroeve^{2,3}

Introduction

Surface energy budget

Downward longwave radiation

Previous studies

Introduction

Methods

Downward longwave radiation

Surface energy budget

2

Conclusions

Sea-ice edge detection

- MPI-ESM1-2-LR (CMIP6), monthly data, 1850 2100
- Remap data to regular grid
- Ice edge \equiv 15% sea-ice concentration
- Extract ice edge mask for every September

3

Introduction Methods Surface energy budget Downward longwave radiation Conclusions

Sea-ice edge detection

- MPI-ESM1-2-LR (CMIP6), monthly data, 1850 2100
- Remap data to regular grid
- Ice edge \equiv 15% sea-ice concentration
- Extract ice edge mask for every September

Methods

Surface energy budget at the moving sea-ice edge

Introduction

Methods

Surface energy budget

Downward longwave radiation

Conclusions

Surface energy budget at the moving sea-ice edge

- Arctic divided into four regions
- SEB is negative in Atlantic
- Largely constant over time except for Atlantic sector

Introduction

Downward longwave radiation

Surface energy budget in different ensemble members

- MPI-ESM:
 30 ensemble
 members
- Consistent features

Introduction Methods Surface energy budget Downward longwave radiation Conclusions

Downward longwave radiation in different sectors

- LW is the long-term driver of sea-ice evolution
- LW is higher in the Atlantic sector (clouds?)
- Similar evolution for other regions and ice edge mean
- At fixed locations, the downward longwave radiation changes much more than at the ice edge.

Methods

Introduction

Surface energy budget

Downward longwave radiation

Downward longwave radiation rises much less at the ice edge

- LW rises linearly with CO₂ emissions across the Arctic (CMIP5: Notz and Stroeve, 2016)
- Similar to Northern hemisphere
- LW rises linearly at the moving ice edge, but much less than elsewhere.
- Possibly "self-compensation" of LW at the ice edge: Ice migrates spatially to regions where LW is lower.

$$\Rightarrow \Delta SEB = 0 = \Delta LW_{in} + \Delta SW_{net}$$

Introduction

Methods Surface energy budget

Downward longwave radiation Conclusions

Take-home messages

- As the ice edge moves northwards, the SEB shows little meridional variability but has a high zonal variability along the ice edge at a given time.
 - The Atlantic sector differs from other regions and is highly impacted by oceanic heat fluxes.
 - Excluding the Atlantic, the SEB is roughly constant.
- The findings are consistent across the 30 member ensemble of the MPI-ESM.
- Downward longwave radiation rises much less at the ice edge than across the Arctic / the Northern hemisphere.
 - This might be due to the spatial variability of the LW flux.
 - It is important that models simulate the radiative fluxes correctly.

julia.steckling@studium.uni-hamburg.de

Introduction

Methods S

Surface energy budget

Downward longwave radiation

Conclusions