

The effect of Natural Halogens on Tropospheric Ozone Chemistry in the Pre-Industrial vs Present-Day

J. Barrera^{1,2}, D. Kinnison, R. Fernandez, C. Cuevas, S. Tilmes and A. Saiz-Lopez¹ ¹ Institute of Physical Chemistry Rocasolano, CSIC, Spain.

²Research Institute for Physical Chemistry of Cordoba (INFIQC-CONICET), Argentina

The effect of Natural Halogens on Tropospheric Ozone Chemistry in the Pre-Industrial vs Present-Day

Javier A. Barrera^{1,2,3}, Douglas E. Kinnison^{4*}, Rafael P. Fernandez^{1,5,6}, Jean-François

Lamarque⁷, Carlos A. Cuevas¹, Simone Tilmes⁴ and Alfonso Saiz-Lopez^{1*}

¹ Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, 28006 Madrid, Spain.

² Research Institute for Physical Chemistry of Cordoba (INFIQC-CONICET), Córdoba, Argentina.

³ Department of Physical Chemistry, School of Chemical Sciences. National University of Córdoba, Córdoba, Argentina.

⁴ Atmospheric Chemistry Observations and Modelling, National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA.

⁵ Institute for Interdisciplinary Science, National Research Council (ICB-CONICET), Mendoza, Argentina.

⁶ School of Natural Sciences, National University of Cuyo (FCEN-UNCuyo), Mendoza, Argentina

⁷ Climate and Global Dynamics Laboratory, NCAR, Boulder, Colorado, USA

DOI: https://doi.org/10.5194/egusphere-egu23-12850

Session AS3.11 - 'Halogens in the Troposphere', Abstract EGU23-12850

1. Study objectives

- > assessing the change in the partitioning of tropospheric inorganic halogens (I_y , Br_y and Cl_y) between reactive and reservoir species in PI and PD.
- > Quantify the impact of individual iodine, bromine and chlorine chemistry, as well as a complete natural halogens scheme, on the tropospheric O_3 budget.
- Examine in detail the contribution of natural halogens to odd-oxygen chemical loss, discriminating the contribution of each of the odd-oxygen depleting chemical families (e.g. O_x , HO_x, NO_x, and Halogens)

2. CAM-Chem simulation design

Table 1. Model	l scenarios for	Pre-industrial	(PI) and Present-da	ay (PD) simulations
----------------	-----------------	----------------	---------------------	---------------------

Scenarios	Long-lived	VSL	I ₂ /HOI	SSA-	acid-
	halocarbons	halocarbons	emissions	recycling	displacement
	LBC	emissions		emissions	emissions
REF	YES	NO	NO	NO	NO
VSL_I	YES	YES	YES	NO	NO
VSL_Br	YES	YES	NO	YES	NO
VSL_Cl	YES	YES	NO	YES	YES
VSL_ALL	YES	YES	YES	YES	YES

- 1. Specified dynamic simulation
- 2. Imposed sea surface temperature (SST) and representative of each period
- 3. Emissions:
- Long-lived halocarbons are based on the A1 halogen scenario (WMO 2011) for PD and zeroed for PI
- Very short-lived (VSL) halocarbons is based on the Ordoñez et al., (2012) emissions inventory
- Oceanic emission of inorganic iodine (HOI/I₂) depends on near-surface O₃, wind speed and SST (Prados-Roman et al., 2015)
- The SSA-heterogeneous recycling of inorganic halogen is a tropospheric net source of Br and Cl (Fernandez et al., 2014)
- The acid-displacement heterogeneous reactions of odd-nitrogen is a tropospheric net source of Cl (Li et al., 2022)
- Greenhouse gas and non-halogenated species on based IPCC (2019) and Meinshausen et al. (2011)

3. Result: background changes between PI and PD

3. Changes in inorganic halogen partitioning

3. Changes in inorganic halogen partitioning

- Similar to iodine, there is a strong partitioning into reservoirs mainly in the lower troposphere
- The PI to PD increase in Cl_v is due to:
 - stratospheric-to-tropospheric transport of Cl_v rich air masses
 - enhanced SSA-dehalogenation driven by more halogens
 - chlorine production from odd-nitrogen uptake in SSA driven by an increase in near-surface NO_x abundance

3. Changes in inorganic halogen partitioning

Tropospheric Br_v is slightly reduced in the transition PI to PD:

- VSL bromocarbons emissions are assumed equal in both periods
- increased conversion of reactive to reservoirs improves the bromine wet-removal via washout and scavenging

3. Changes in global tropospheric ozone

- In percentage terms, halogens induce a larger ozone depletion in PI (-14 ± 0.5 %) than PD (-13 ± 0.5 %)
- This effect is mainly governed by iodine and then bromine
- Individually:
- iodine has a role equal in both periods (-7 %)
- bromine has a larger role in PI (-5 ± 0.4 %) vs. PD (-4 ± 0.4 %)
- Chlorine has a larger role in PD (-2.5 ± 0.4 %) vs. (PI: -2 ± 0.4 %)

Unlike iodine, the impact of bromine and chlorine is reduced over these latitudes in the PI to PD transition

For the VSL_ALL scenario, the tropical TOC reduction over the oceans is governed by iodine, while chlorine and bromine play a major role in the mid-high latitudes

3. Changes in ozone vertical distribution

4. Conclusion

- > Our analysis shows that increasing surface emissions of the main anthropogenic ozone precursors (e.g. NOx, CO, CH_4 and NMVOC) increase natural emissions of halogens and alter the chemical partitioning between reactive and reservoir species, which directly affects their behavior on tropospheric ozone depletion.
- The tropospheric ozone reduction is more sensitive to natural halogens in PI than PD, with percentage changes in TOB of -14 ± 0.5 % for PI and -13 ± 0.5 % for PD.
- > The iodine role in TOB reduction is equivalent in both periods (-7%), with an impact on ozone in marine environment.
- > Bromine plays a larger role in the PI ($-5 \pm 0.4 \%$) vs. PD ($-4 \pm 0.4 \%$), with a larger impact on Antarctic ozone.
- > Chlorine plays a minor role, with a larger impact on ozone in polluted environments (PD: $-2.5 \pm 0.4 \%$ vs. PI: $-2 \pm 0.4 \%$).
- > Combined, the natural halogens maximize ozone depletion in the tropical UT and Antarctic FT.
- > The halogen-driven ozone depletion from surface to FT decreases in the transition from PI to PD

Thanks for your attention