# **Transient Attracting Profiles in the Great Pacific Garbage Patch**

Luca Kunz<sup>a</sup>, Alexa Griesel<sup>a</sup>, Carsten Eden<sup>a</sup>, Rodrigo Duran<sup>b</sup>, Bruno Sainte-Rose<sup>c</sup> <sup>a</sup>Institute of Oceanography, University of Hamburg, Germany, <sup>b</sup>Theiss Research, La Jolla CA, USA, <sup>c</sup>The Ocean Cleanup, Rotterdam, The Netherlands

### Introduction

TRansient Attracting Profiles<sup>6</sup> (TRAPs) are short-term attractors on the ocean surface and allow to predict pathways of material transport<sup>3,5,6</sup>. We apply this concept to the problem of marine debris and study the characteristics of such hyperbolic structures within the North Pacific subtropical gyre, a large-scale convergence zone that is known to 235 entail the Great Pacific Garbage Patch (GPGP). Image: Mean geostrophic + Ekman current velocities<sup>1</sup> in the Northeast Pacific, averaged over 2000-2019.

The colourmap indicates the eddy kinetic energy (EKE) w.r.t. the same period. Study domain highlighted in red.



## Methods

TRAPs are computed<sup>4</sup> from snapshots 4,537,424 TRAP objects from which we identify of near-surface geostrophic velocity<sup>2</sup>. 646,223 trajectories. For every TRAP, we They represent local minima of the estimate the smaller Eigenvalue field s<sub>1</sub> of the rate-of- • translation speed and compare it to the strain tensor and are at every point tangent to the unit eigenvector field  $e_2$ , • lifetime  $\Lambda$ indicating directions of maximal  $\bullet$  strongest attraction  $\vec{s}_1$  along its trajectory stretching. We study TRAPs in the • GPGP for the period 2000-2019 and find

#### Propagation

Image: Latitudinal distribution of zonal 0.5° bins in form of box-whisker-plots. propagation speeds for a) 3,570,329

The zonal propagation speeds of TRAPs TRAP and b) 1,286,131 mesoscale eddy<sup>7</sup> and of mesoscale eddies coincide. instances in the domain. Values are allocated to



propagation of mesoscale eddies<sup>7</sup>

duration  $\lambda$  of hyperbolic drifter<sup>4</sup> motion around the structure



(1,824) 792 We find encounters for which a drogued (undrogued) drifter moves hyperbolically around a TRAP, the mean duration for this hyperbolic transport is around 7 days (5 days). Image: a) to d) Observed  $\frac{1}{3}$ hyperbolic transport around a Panels show in TRAP. chronological order how a drifter (purple dot) is attracted perpendicular towards a TRAP and then transported  $\sum_{n=1}^{\infty}$ along it. Quivers indicate the geostrophic surface velocity, the colourmap the relative vorticity field. e) Distribution of the estimated duration  $\lambda$  of hyperbolic drifter motion around TRAPs for 792 drifter-TRAP pairs with drogue. The mean is indicated by a black triangle.

#### Trajectories

Strong TRAPs primarily form in regions of high EKE, weak and ephemeral ones in regions of low EKE. On average, TRAPs exist for 7 days with lifetimes reaching up to 351 days. Image: Trajectories of the 65,000 a) most persistent and b) strongest TRAPs in the domain. Trajectories are coloured by the associated TRAP lifetime  $\Lambda$  and peak attraction  $\check{s_1}$ .

#### Impact on drifters



![](_page_0_Picture_30.jpeg)

contact: alucakunz@gmail.com

Trajectories Atlas (META3.2 DT allsat version). doi: 10.24400/527896/a01-2022.005.220209.