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What is the Darcy-scale
and why is it anissue?

The Darcy experiments on water flow through a saturated filter sands
led to his famous linear flow equation, stating that the flow rate (q)
depends on the hydraulic pressure gradient (VH) and the invert of the
bulk resistance (K, hydraulic conductivity): q = K-VH

This linear model is valid for laminar flow conditions dominated by
viscous forces and small Reynolds numbers. Moreover, itis a
macroscale description, which requires the definition of a
representative elementary volume (REV) for its application. The
properties of this model are inherited by descendant models such as
the Richards equation.

While this concept of depletion of a hydraulic gradient against a
resitance is highly relevant in general, its embedded scale and bulk
property simplification mismatch with most soil water issues. Dynamic
connectivity, film flow, local turbulence, inertia, scale transitions, and complex
fluid-surface interactions dominate the behaviour of partially saturated soil
water dynamics.

For more details about the Darcy model, see my E“’sﬁm
recent publication in the Reference Module in Earth

Systems and Environmental Sciences https://doi.org/
10.1016/b978-0-12-822974-3.00150-6 E.' .-.-i"

What are Darcy-scale daemons?

The Darcy equation can be seen as the foundation of soil physics and
hydrology. As such it is embedded in many levels of analysis: From
measurements of soil properties in ring samples to landscape scale
model applications. This includes the derivation of parameters for soil
hydraulic models (e.g. Kosugi, van Genuchten) to propagate the highly
non-linear interaction of matric potential, wetted surfaces (soil
moisture) and state-dependent hydraulic conductivity as a unique,
derivable function. Any deviation from this function is attributed to
hysteresis or heterogeneity.

This practice implicitly assumes scale invariance (using ring sample
parameters for landscape scale applications) and contradicts
scientific standards of falsifiability (when deviations are attributed to
external variance rather than systematic problems). Because these
problems are deep-rooted and neither intentional nor easy to avoid,
we call them daemons.

Examples at the lab-scale: Ring samples and
measured soil water curves

We analysed soil water retention capacity and hydraulic conducti-
vity of unsaturated soils in 572 undisturbed ring samples covering a
wide range of soil texture, bulk density and
organic carbon content. .

Texture appears as rather weak predictor for '
soil hydraulic properties and soil water i ;
references. Many drying curves overlay or
intersect.
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Examples at the plot-scale: Observed soil
water curves in the field

We conducted a field trial of many sensors for soil moisture and matric
potential. As a side-product we derive in-situ retention curves -
mismatching the lab reference measurements.
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Moreover, the retention time series reveal system state dynamics
after conversion from the Darcyian ©/y relation to an energy
perspective.
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Examples at the hillslope-scale: Are soil
retention data relevant at all?

We aggregated soil retentiondata ™7 e e
from several samples into one Ez: E‘Q\ . ~;\\ lé
functional soil water curve for a Bl ™ nl e :
catchment. And we analysedhow "~~~ """~ "0
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Examples for scaling in soil landscape
studies: How can we align concepts,
measurements and conclusions?

We analysed how different studies
dealt with the issue of scales and
scaling to infer on landscape
properties. In most cases scale
transfer remains hypothesized and
outside the scope of analyses.

For more details about this study, see our preface to a
special issue in HESS and ESSD https://doi.org/
10.5194/hess-25-5277-2021
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How can we raise awareness to
information and scaling in our analyses?

We propose a scale- and information aware evaluation concept
for pedotransfer function derivation and application. This concept
links the issue of information content with scale and boundary
conditions.
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By evaluating the different elements of a study in this concept,
scale transfers become apparent - and can be addressed or
avoided. It also clarifies on the level of information required for
evaluation. This helps to avoid possible mismatching linkages
between different levels of system information.

Proposal for a standardised pedon-scale
experiment

On the one hand, scale transfer is difficult. On the other hand we
require soil functional data above mere retention properties. We
propose to convey our lab-scale experiences into the field with a
smart, standardised and repeatable field experiment at the pedon
scale.

> the pedon-scale might be
sufficiently close to the scale of
application

> we can observe boundary
fluxes, internal reconfiguration,
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