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Introduction & motivation

Parametric study scheme

References

Model setup

Map of the main features in the West Antarctica Ri� System and the 
surrounding provinces. VLB: Victoria Land Basin, CT: Central 
Trough, CH: Central High, EB: Eastern Basin, NB: Northern Basin, 
TR: Terror Ri�, NVL: North Victoria Land, SVL: South Victoria Land, 
MBL: Marie Byrd Land. Red line: seismic profiles BGR-�� and  
ACRUP�. Purple line: grounding line of the Ross Ice Shelf. Dotted 
black line: ���� m isobath. Hatched areas: sedimentary basins 
redrawn from Decesari et al. (����) and Davey and Brancolini 
(����). Bed bathymetry from IBSCO v� (Dorschel et al., ����).

Results & discussion

What shaped the basins in the Ross Sea?
What is the sensitivity to the initial conditions?

Three two-parameter spaces:
    A) max damage / damage position
    B) weak or strong LC / ri� duration

C) shape of lateral geotherm variation
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The Cretaceous - middle Neogene extension in the West Antarctica Ri� System 
(WARS) bears evidence of the concurrent formation of multiple basins normal 
to the ri� axis. In its southernmost portion, on the Ross Shelf, three main 
basins can be identifed: the Victoria Land Basin, the Central Trough, and the 
Eastern Basin - for a present-day length of almost 1000 km.

The different basins, bounded by structural highs, exhibit significant variations 
in the thickness and thinning of the underlying crust and lithosphere. This 
multiple-basin pattern suggests that, at least for some part of the ri�ing, the 
deformation occurred in a diffuse pattern, instead of being localized in a small 
portion of the ri� system. The reconstructed kinematics suggests 2 separate 
ri�ing phases.

We aimed at two peculiar features observed in the southern portion of the ri� 
system:

•
•

the transition, in time, from diffuse to focused deformation
the migration of the deformation focus from east to west, towards the 
cratonic domains of East Antarctica

This pattern seems unlikely in a simple model of a lateral transition to an off-
craton domain. To test what is required to trigger this behaviour, we set up a 
parametric study in a simplified 2D analogue of the southern Ross Sea at 
around 110 Ma. We aim at assessing the sensitivity of ri� evolution to inherited 
structures, improving the knowledge on the initial conditions and the 
parameter choices involved in basin modelling (e.g. in paleo-bathymetric 
reconstructions, see Colleoni et al. 2021). 

Section sketch along the ACRUP2 profile, redrawn from Trey et al. (1999)
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Density (T, P dependent): ρ0 = 2700 kg m-3, α = 3.45 10-5 K-1, β = 10-11  Pa−1

Viscous creep law: quartz (wet) from Gleason & Tullis (1995)
Plastic yelding: crust from Huisman et al. (2011)
Thermal conductivity: 2.70 W m-1 K-1, radioactive heat production: A=1.20 μW m-3

Density (T, P dependent): ρ0 = 2900 kg m-3, α = 3.45 10-5 K-1, β = 10-11  Pa−1

Viscous creep law:
    - "strong LC" : diabase (dry) from Carter and Tsenn (1987)
    - "weak LC" : quartz (wet) from Gleason & Tullis (1995)
Plastic yelding: crust from Huisman et al. (2011)
Thermal conductivity: 2.55 W m-1 K-1, radioactive heat production: A=0.12 μW m-3

Density (T, P dependent): ρ0 = 3370 kg m-3, α = 3.45 10-5 K-1, β = 10-11  Pa−1

Viscous creep law: dry olivine from Korenaga and Karato (2008)
Plastic yelding: mantle from Perron et al. (2021), Goetze & Evans (1979)
Thermal conductivity: 2.55 W m-1 K-1, radioactive heat production: A=0.12 μW m-3

We employ a 2D thermo-mechanical synthetic model of the lithosphere 
and upper asthenosphere, relying on the open source Underworld 2 
code (particle-in-cell finite element approach,  see Mansour et al., 2020).

We use a non-deforming orthogonal Cartesian mesh of 534 × 168 (H × V) 
Q1 elements. The solver of the advection diffusion equation is the Semi-
Lagrangian Crank-Nicholson (SLCN) algorithm. The free topographical 
surface is modelled using the sticky air approach: η(air) = 1019 Pa s.

Water and sediment infill are set at a threshold of 0 and -1 km, 
respectively → we approximate sedimentation as always matching the 
subsidence rate.
The initial temperature field is modelled with a steady-state solution, 
using a basal heat flow of Q(-300 km) = 9 mW m-2. A thermal transient, in 
terms of a temperature gradient perturbation, is then superimposed. 
Temperature in the mantle is limited by the adiabatic temperature 
gradient (0.532 K km-1 with a potential temperature of 1300 °C).

We use a stress limiter at 
σp = 450 MPa to approximate Peierls 
creep in the mantle.
So�ening due to cumulated plastic 
strain is modelled with a linear 
degradation of the friction angle φ:

Visco-plastic rheology:

with the yield value criterion:
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imposing enough damage in the off-craton portion results in a strong 
damage-controlled basin position

the influence of velocity seems negligible (same 
extension in 1/3 of time)

a sharp transition (small lateral extents) results in almost no sensitivity to a 
larger temperature transient

with a wide transition: asymmetry is reversed when the steeper transient 
temperature gradient is imposed, more west-ward increase of subsidence 
and thinning in the latter stages

what are the analogues of a warmer lithosphere at a craton boundary?

it should be noted that we are allowing for a large 
sedimentation rate, a different outcome is likely if 
infill is not always matched to subsidence
weak lower crust: surface expression of (almost) 
decoupling crust and mantle: less steep basin sides 
and no upli� of ri� flanks

however, there is still significant influence of the western domains: basin 
asymmetry (and its evolution in time)
with a close weak zone, subsidence starts asymmetrical, then the west part 
matches the subsidence rate (see bottom-right model)
below a damage threshold, the style is purely controlled by the position of 
lithosphere thickness transition
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