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Kinetic multi-layer models of aerosols and films have become the state-of-the-art method of describing complex aerosol processes at the particle and film
level. We present MultilayerPy:1 an open-source framework for building, running and optimising kinetic multi-layer models — namely the kinetic multi-layer
model of aerosol surface and bulk chemistry (KM-SUB) and the kinetic multi-layer model of gas—particle interactions in aerosols and clouds (KM-GAP).
MultilayerPy abstracts the model building process into separate building blocks, increasing the reproducibility of results and minimising human error.

(1) Introduction to kinetic multi-layer models
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Figure 1. A schematic of kinetic multi-layer models of aerosol and film processes.

ayer.

Key features include:

Kinetic multi-layer models split an aerosol particle or film into a number of bulk
ayers and resolve chemical reactions within and mass transport between each

* Resolution of surface and bulk phase processes.

« Consideration of bulk phase viscosity.

« Particle size changes.
« Calculation of uptake coefficients.

* Resolution of concentration gradients within the bulk phase.

Two of the main kinetic multi-layer models are the kinetic multi-layer model of
aerosol surface and bulk chemistry (KM-SUB)? and gas-particle interactions
(KM-GAP).3 Writing these models manually is time-consuming and error
prone. There is a need for a tool to facilitate the creation and optimisation

of these models.
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Figure 3.1 The MCMC sampling process
for one varying parameter. (a) a set of
MCMC samples consistent with the data.
(b) The chains of values for each walker
at each MCMC algorithm iteration. (c) The
distribution of parameter values derived
from the converged walkers.
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(3) Estimating parameter

uncertainty

Fitting parameter uncertainty is
determined using Markov Chain
Monte Carlo (MCMC) sampling.

This involves setting a number of
“‘walkers” on a random walk in the
parameter space.

The likelihood of the next step In
the walk is determined by how
well the model fits to the data at
the current position.

The “chain” of positions
converges around the region of
best fit and a probability
distribution is obtained for the
varying parameters (Fig. 3(c)).!

(4) Concentration gradients

Bulk concentration gradients can
be resolved by the models
constructed by MultilayerPy.

Figure 4. A heatmap plot showing
the depth- and time-resolved oleic
acid concentration in a film
exposed to ozone.

(2) MultilayerPy

®

Model type

+ (ModelType) ‘

Reaction scheme | o @ » | Diffusion regime

(ReactionScheme) (DiffusionRegime)
v
@ ' | MC:
Y| we | we | wo | todeComponent g
| |
A 4

O

PythonClass

Legend: Model builder
(ModelBuilder) Model code
Model
(Simulate)
(Optimizer) data
Figure 2.1 A schematic of MultilayerPy
showing its modularity and the key steps in
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Figure 5. Model-data fits from a kinetic
model created in MultilayerPy. Each plot
contains kinetic data from real films
deposited on water reacting with OH
radicals.?

These optimised models were used to
calculate the chemical half-life over a
range of [OH] concentrations.

The lifetime of these organic films can

MultilayerPy?! is a Python package
made to facilitate the creation,
running and optimisation of kinetic
multi-layer models.

The key features include:

 Modularity — the model
building process is split into
chunks so that the user can
iterate through different models
with ease.

 Reproducibility — the model
output and code are generated
In a readable manner,
encouraging the user to share
their code with e.g. a
publication.

 Open-source — the package is
released under an open-source
license and collaboration on
the project is encouraged.

« Scalability — it Is possible to
parallelise MultulayerPy model
optimisation algorithms over
many computer cores (e.g. on
a supercomputer).

(5) Use case: films of real

atmospheric material

MultilayerPy was used to create a
simple kinetic model for films of
real atmospheric material reacting
with OH radicals (Fig. 5).4

Two models were tested:
() Without an unreacted residue.
(i) With an unreacted residue.

We found that the model with a
residue fit better to the data.
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Figure 6. The chemical half-life
vs [OH] for models optimised to
the kinetic data in Fig. 5.4
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GitHub repository (includes tutorials):
https://github.com/tintin554/multilayerpy

0.
2. Search “MultilayerPy” on YouTube for tutorial
videos...


https://github.com/tintin554/multilayerpy

