From MODIS cloud properties to cloud types

using semi-supervised learning

Julien LENHARDT¹, Johannes QUAAS¹, Dino SEJDINOVIC²

¹ Institut für Meteorologie, Universität Leipzig, Leipzig, Germany

² Department of Statistics, University of Oxford, Oxford, United Kingdom

 \rightarrow Clouds play a crucial role in the Earth's energy budget. \rightarrow Different cloud types = very different radiative properties and interact in numerous ways with aerosols.

UNIVERSITÄT

LEIPZIG

 \rightarrow Aim is to classify cloud regimes objectively.

Method developed¹ based on colocated satellite retrievals of cloud properties and surface observations of cloud types.

 \rightarrow square tile (128 x 128 km) of cloud properties around the cloud type retrieval.

Issue of the low number of colocated samples and their high-dimensionality \rightarrow semi-supervised encoding step using an AE² to extract meaningful representations from the cloud scenes.

Data

Labels = Global marine meteorological observations³, Cloud type observations. **Input features** = MODIS Atmosphere L2 Cloud Product⁴, cloud-top properties, cloud optical and microphysical properties.

Results

Class labels reworked into either 4 or 10 cloud groups⁵. 4 groups \rightarrow high, middle, cumuliform, stratiform (shown here). 10 groups \rightarrow cirrus, cirrostratus, cirrocumulus, altostratus, altocumulus, cumulus, stratocumulus, stratus, cumulonimbus and cumulus + stratocumulus.

Still highly unbalanced dataset \rightarrow over-sampling & IBA⁶ of the geometric mean

Generalization = one of the main objectives since spatial coverage decreases greatly during the colocation process.

Cloud type relative occurence observations - Random forest classifier predictions

Colocated dataset ~ 5 000 samples (year 2008, global) MODIS tiles dataset ~ 600 000 samples (year 2016, global)

Data product	Description	Variables	Resolution
Global marine meteorological observations	Synoptic observation	Cloud type (30 categories)	Latitude/longitude coordinates 0.1° Hourly/daily observations
MODIS Atmosphere L2 Cloud Product (MOD06)	Cloud-top properties, cloud optical and microphysical properties	CTH (m) COT (a.u.) CWP (g.m ⁻²)	1-km resolution Daily overpass
MODIS Atmosphere L2 Cloud Mask Product (MOD35)	Cloud pixel flag	Cloud mask	1-km resolution Daily overpass

Methodology summary

1) Colocate surface synoptic observations and satellite retrievals. 2) Train AE model on MODIS cloud properties tiles. 3) Encode colocated cloud-scene samples using the trained encoder. 4) Train cloud classification model with encodings and cloud type labels.

Acronyms:

AE : Auto-Encoder CTH : Cloud-top height COT : Cloud optical thickness *CWP* : Cloud water path *CTP* : Cloud-top pressure N_d : Droplet number concentration *LWP* : Liquid water path

References:

¹ Lenhardt et al. (in prep) ² Hinton et al. (2006) ³ Met Office (2006) ⁴ Platnick et al. (2017)

⁵ Kuma et al. (2023) ⁶ Garcia et al. (2009, 2010) ⁷ Rossow et al. (1991) ⁸ Jungclaus et al. (2022)

Next steps and perspectives: \rightarrow Evaluate cloud representation in global simulation outputs from ICON-ESM⁸ (in collaboration with Daniel Klocke, Max Planck Institute for Meteorology)

 \rightarrow Investigate cloud adjustments to aerosol cloud interactions (e.g. N_d – LWP) relationship) through the scope of the cloud classification developed here.

QR Code

to abstract

101 Cloud optical thickness (a.u.) ISCCP classes Comparing to the ISCCP COT-CTP classes⁷ \rightarrow Separation between cumuli- and stratiform clouds not clear \rightarrow Middle clouds covering a wide range of classes \rightarrow High clouds cluster captured

Contact:

Julien LENHARDT

Institut für Meteorologie

Universität Leipzig

E-Mail : julien.lenhardt@uni-leipzig.de

top pres

-008 Cloud

This project receives funding from the European Union's Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement No 860100.

10⁰

10¹