
Results

Class labels reworked into either 4 or 10 cloud groups5.
4 groups → high, middle, cumuliform, stratiform (shown here).
10 groups → cirrus, cirrostratus, cirrocumulus, altostratus, altocumulus, cumulus, 

stratocumulus, stratus, cumulonimbus and cumulus + stratocumulus. 

Still highly unbalanced dataset → over-sampling & IBA6 of the geometric mean

Generalization = one of the main objectives
since spatial coverage decreases greatly
during the colocation process.

Comparing to the ISCCP COT-CTP classes7

→ Separation between cumuli- and stratiform clouds not clear
→ Middle clouds covering a wide range of classes
→ High clouds cluster captured
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→ Clouds play a crucial role in the Earth’s energy budget.
→ Different cloud types = very different radiative properties and 
interact in numerous ways with aerosols.
→ Aim is to classifiy cloud regimes objectively. 

Method developed1 based on colocated satellite retrievals of cloud properties 
and surface observations of cloud types.
→ square tile (128 x 128 km) of cloud properties around the cloud type retrieval. 

Issue of the low number of colocated samples and their high-dimensionality
→ semi-supervised encoding step using an AE2 to extract meaningful 
representations from the cloud scenes.

Data

Labels = Global marine meteorological observations3, Cloud type observations.
Input features = MODIS Atmosphere L2 Cloud Product4, cloud-top properties, 
cloud optical and microphysical properties.

Colocated dataset ~ 5 000  samples (year 2008, global)
MODIS tiles dataset ~ 600 000 samples (year 2016, global)

Methodology summary

1) Colocate surface synoptic observations and satellite retrievals.
2) Train AE model on MODIS cloud properties tiles.
3) Encode colocated cloud-scene samples using the trained encoder.
4) Train cloud classification model with encodings and cloud type labels.
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Data product Description Variables Resolution

Global marine 
meteorological 
observations

Synoptic observation Cloud type (30 
categories)

Latitude/longitude 
coordinates 0.1°

Hourly/daily observations

MODIS Atmosphere 
L2 Cloud Product 
(MOD06)

Cloud-top properties, 
cloud optical and 
microphysical 
properties

CTH (m)

COT (a.u.)

CWP (g.m-2)

1-km resolution

Daily overpass

MODIS Atmosphere 
L2 Cloud Mask 
Product (MOD35)

Cloud pixel flag Cloud mask
1-km resolution

Daily overpass

Acronyms:
AE : Auto-Encoder
CTH : Cloud-top height
COT : Cloud optical thickness
CWP : Cloud water path
CTP : Cloud-top pressure
Nd : Droplet number 
concentration
LWP : Liquid water path

Next steps and perspectives:
→ Evaluate cloud representation in global simulation outputs from ICON-ESM8

(in collaboration with Daniel Klocke, Max Planck Institute for Meteorology)

→ Investigate cloud adjustments to aerosol cloud interactions (e.g. Nd – LWP 
relationship) through the scope of the cloud classification developed here. 
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Observations used for global reference (right) are from a 11-year period (2010-2020) aggregated on a 5°x 5° grid, only grid cells with more than 100 observations are shown.
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