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Introduction
The Western Gneiss Region (WGR) in W Norway is the lowermost
tectono-stratigraphic unit in the nappe pile of the Scandinavian Cale-
donides. Exposed high-grade gneiss hosts ultrahigh pressure (UHP)
metamorphic eclogite in domains that alternate without evidence for
being separated from one another by tectonic shear or ductile flow
[1, 2]. We studied five eclogites from two UHP domains and the
interjacent HP area in the Storfjord–Moldefjord region for mineral
chemistry and microstructures to constrain differences and similari-
ties in their metamorphic evolution. This study aims on the reason
for the apparent bimodality in metamorphism that is the source for
contrasting models of tectonic UHP rock exhumation [3, 4, 5].
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Fig. 1: Simplified map of the WGR that shows sample locations and known
areas of UHP metamorphism from eclogite [1, 6] and peridotite [7].

Mafic rocks (eclogite) define three large UHP domains (or areas) that
spread along the coast (shaded in Fig. 1). Ultramafic rocks (garnet
pyroxenite enclosed in orogenic garnet peridotite) define UHP ex-
posure that partially overlaps that of eclogite and partially fills the
space in between (outlined in Fig. 1). When taken together, evidence
for UHP metamorphism is concentrated in two areas that are sepa-
rated by a gap between Storfjord and Moldefjord.

Oriented inclusion petrography
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Fig. 2: Oriented inclusions in clinopyroxene (PPL; except c, e, g nearly XPL). (a–d) Bimineralic needles. (e–f) Monomineralic needles show a transformation
by the reaction Qtz + Jd = Ab. Dashed frames display positions of inset photos (reflected light). Label numbers refer to Raman spectra shown in Fig. 3.
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Fig. 3: Raman data of inclusions (numbered, Fig. 2) and reference material.

Clinopyroxene chemistry
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Characteristic
for the reaction:

2 CaEs = CaTs + 3 SiO2
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Fig. 4: Selected endmember proportions of needle bearing and integrated
clinopyroxene. Solid lines connect compositions of individual grains.

Thermobarometry
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Fig. 5: Thermobarometry based on mineral chemistry. (a) Orthopyroxene
with inclusions of irregularly shaped garnet (nearly XPL). (b) Element oxide
concentrations along the profile shown in (a). (c) PT diagram with metamor-
phic estimates using classical thermobarometry [8, 9, 10, 11].

Conclusions
Eclogites exposed within and interjacent to UHP areas share:

(1) oriented mineral inclusion microstructures after Ca-Eskola
(2) variable transformation of Qtz needles to Ab that show vari-

able degrees of retrogression across area boundaries
(3) similar metamorphic P&T after eclogite facies decompression
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