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1) Motivation

Construct networks to detect
complex structures in the cli-
mate system such as telecon-
nections, clusters and regime
transitions, based on time se-
ries such as temperature, pre-
cipitation or pressure.

Donges et al., Chaos, 2015.

Typical Climate Network Construction:

a. Given climatic variables on fixed locations V = {vi | i ∈ [p]} in
some metric space such as the sphere.

b. Choose similarity measure between pairs of locations based
on finite time-series {Xit}i∈[p],t∈[n],

c. Construct density-threshold network from pairwise similarity
estimates,

d. Evaluate network characteristics.

Problem: Available data limited and noisy.

↰

Calculated similarity values are imprecise estimates.

↰

False and missing edges in the empirical networks.

Which of the findings in climate networks can be attributed
to underlying structure, and which of them are random

artifacts due to finite-sample noise?

2) We Suggest a Diagnostic Tool:
Isotropic Gaussian Random Fields on S2

On a finite grid {vi}i=1,...,p ⊂ S2, a 0-mean Matérn IGRF G fulfills(
G(v1), . . . , G(vp)

)
∼ N(0,Σ),

with covariance Σij = kν,ℓ(|vi − vj|).
Matérn covariance function kν,ℓ flexible with smoothness and
length scale parameters ν and ℓ.
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Introduce time dependence via VAR(1)-process:

Xt = AXt−1 + εt,

where A diagonal autocorrelation matrix and innovations
εt ∼ N(0,Σε) i.i.d. to generate Xt ∼ N(0,Σ) for all t.

5) Conclusions

• Extreme distortion of network measures (degree, clustering
coefficient, betweenness, ...).

• Localized correlation structure induces spurious
link-bundles and spuriously dense/sparse regions.

• Trade-off for network density selection: Sparse networks
have a lower fraction of false links, but single false links have
higher impact.

• Anisotropic estimation variance biases empirical networks.

Simple Improvements:
• Suitable estimators can prevent many false links.
• kNN graphs can reduce biases and uncover different
structures.

3) We Discover Spurious Behaviour in Empirical Networks

Localized correlation structure leads to errors propagating locally, inducing spurious link-bundles
and spuriously dense/sparse regions.

Ground truth network
Empirical Pearson

Correlation Network
Empirical Spearman
Correlation Network

Random global betweenness
’backbones’

Distorted distributions of
network measures

Bundling behaviour increases
with local correlations
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↰

Significance questionable.

↰

Not detected by multiple
empirical networks.

↰

Significance cannot be
based on link-bundles.

Anisotropic marginals

Anisotropic autocorrelation

Anisotropic ...

Anisotropic estimation
variance on edges Biased networks
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↰

Strong degree bias in real climate networks induced by anisotropic autocorrelation patterns.

4) Assessing Significance from Network Ensembles:
Spatially Coherent Bootstrap on the Time Series

SOTA resampling procedures produce unrealistic network distributions:
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SOTA procedures either preserve marginal time-series spectra or perform edge resampling.

E Not addressed: How robust is my network estimate? How large is the intrinsic variability?

↰

Data-based resampling that respects spatial dependencies:
• Multiple block-bootstrapping/subsampling estimates per edge to quantify edge-wise estimation
variance,

• multiple equally valuable networks allow identifying recurring patterns.
Open question:

Which resampling procedure results in best finite-sample performance, consistently
estimates anisotropic estimation variance and prevents biases from high dimension?

6) Future work

• Resampling for networks from spatio-temporal data,
• Reassess significance of several results in climate network lit-
erature,

• similar complex networks in neuroscience,
• In which ways are PGMs and causal networks distorted? In Journal of Climate


