## Improving post-processing of East African precipitation forecasts using a generative machine learning model

**Bobby Antonio**<sup>1</sup>, Andrew McRae<sup>2</sup>, Dave MacLeod<sup>3</sup>, Fenwick Cooper<sup>2</sup>, John Marsham<sup>4</sup>, Laurence Aitchison<sup>5</sup>, Tim Palmer<sup>2</sup>, and Peter Watson<sup>1</sup>

•1School of Geographical Sciences, University of Bristol, Bristol, UK (bobbyantonio@gmail.com)

•2Department of Physics, University of Oxford, Oxford UK

•<sup>3</sup>School of Earth and Environment Sciences, University of Cardiff, Cardiff, UK

•<sup>4</sup>School of Earth and Environment, Univeristy of Leeds, Leeds, UK
•<sup>5</sup>Machine Learning and Computational Neuroscience Unit, University of Bristol, UK





[1] Leinonen, J., Nerini, D., & Berne, A. (2020). Stochastic super-resolution for downscaling time-evolving atmospheric fields with a generative adversarial network. *IEEE Transactions on Geoscience and Remote Sensing*, *59*(9), 7211-7223.

[2] Harris, L., McRae, A. T., Chantry, M., Dueben, P. D., & Palmer, T. N. (2022). A generative deep learning approach to stochastic downscaling of precipitation forecasts. *Journal of Advances in Modeling Earth Systems*, *14*(10), e2022MS003120.