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1. Introduction

Mudstones and shales are important top seals for various geoenergy applications,
and the mechanical properties of their clay matrix play a crucial role for
understanding seal capacity and failure risk. However, characterizing the mechanical
properties of clay matrix at small scales is challenging. In this study, a workflow was
developed using high-speed nanoindentation mapping combined with machine
learning data analysis to determine representative mechanical parameters of clay
matrix. The approach was tested on a mudstone top seal sample from a Vienna
Basin oil field (Misch et al., 2021), and its reliability was investigated using different
experimental settings. This study represents an important methodological step
towards the high-throughput micromechanical characterization of mudrocks.

2. Methods

Nanoindentation mapping

The sample (~1629 m; quartz 31 wt.%, clay mineral 39 wt.%) was polished using a Hitachi
ArBlade 5000 broad ion beam (BIB) system and imaged using a Tescan Clara field emission
scanning electron microscope (SEM) before and after the nanoindentation.
Nanoindentation property mapping was performed using a Hysitron TS 77 Select
Nanoindenter in load-controlled mode (see also Vranjes-Wessely et al., 2021). A total of
eight array maps (7 × 7 indents, 6 μm spacing) were indented, covering both grain and
matrix areas (Fig. 1). Maps 1-5 tested the effect of different indenter tips (Maps 1-2 with
the Berkovich tip and Maps 3-5 with the Cube Corner tip) and the sensitivity of the
indentation depth with an increasing maximum load from 500 to 1500 µN. Maps 6-8
tested the load rate sensitivity using the Cube Corner tip at a single maximum load of
1000 µN and decreasing loading rates of 6000, 3333, and 1000 μN s-1. The obtained load-
displacement curves were used to determine Er and H after the Oliver-Pharr method
(Oliver and Pharr, 1992).

k-means clustering

The k-means algorithm in the Python library scikit-learn (Pedregosa et al., 2011)
was utilized to classify different phases and determine representative mechanical
properties of the clay matrix. Before clustering, the load-displacement curves were
quality-checked to filter out artefacts or invalid results. k-means clustering analysis
was performed using three input features including hardness (H), reduced elastic
modulus (Er), and the elastic-plastic deformation ratio based on the obtained load-
displacement curves. The number of clusters was set to three to capture the three
main classes including clay matrix, others, and grain. To validate the k-means
clustering results, the residual indentation impression and the constituent materials
under the residual imprint were identified in the SEM images.

3. Results

The k-means clustering efficiently classified three distinct classes and showed an
overall good correlation with the SEM images (Fig. 2). The classification of some
indents located at grain boundaries (classified as “others” ) may be subject to
debate or uncertainty (highlighted magenta circles in Fig. 2). The residual
impressions on the maps produced by the Cube Corner tip are visually much deeper
compared to those by the Berkovich tip. The property maps reveal distinct regions
of the indented grain and clay matrix areas. Decreasing the load rate from 6000 to
1000 μN s−1 resulted in unstable indentation testing and stronger surface damage,
suggesting the sensitivity of the clay matrix to the loading rate.

Fig. 3 shows the obtained Er and H values plotted against indentation contact depth
for Maps 1-5, with the Cube Corner tip sampling deeper depths compared to the
Berkovich tip. The highest indentation depths for the clay matrix indented by the
Cube Corner tip are much deeper than those indented by the Berkovich tip (~150 to
440 nm for the Berkovich tip vs. ~500 to 1750 nm for the Cube Corner tip). Despite
this, the Er and H values for the “clay matrix” class obtained by both tips are in a
similar range, with average Er and H values of 16.23 ± 6.16 GPa and 0.5 ± 0.49 GPa
(n=151), respectively. The “grain” and “others” classes show sharp decrease in Er
and H values over a relatively small depth range, while the “clay matrix” class shows
slight fluctuations but remains generally constant. This suggests that the mechanical
properties of the clay matrix are not as sensitive to the indentation depth as other
phases. Testing with both tips shows that representative values can be determined
from minimum volumes with statistical significance, despite the strongly
heterogeneous microstructure of the indented clay matrix.

4. Conclusions and Outlook

This contribution represents an important methodological
step towards the implementation of combined high-speed
nanoindentation mapping and machine learning data
analysis as a feasible high throughput tool for the
micromechanical characterization of mudstones and
similar fine-grained sedimentary rocks. The presented
approach is planned to be applied to an extensive set of
mudstone samples from the Vienna Basin with the
purpose to link mechanical property changes to burial
diagenesis.

European Geosciences Union General Assembly 2023, Vienna

Fig. 1. Position of the 
indentation maps 
with different 
experimental setups. 
The distinctive 
structure of the 
pyrite cement in 
microfossils helped 
in locating targeted 
testing area during 
nanoindentation.

Fig. 2. SEM images, correlative
Er and H property maps, and the 
k-means clustering results of 
Maps 1-8. SEM images reveal 
visible indentation imprints 
after indentation mapping. 
Linear interpolated Er and H
property maps are based on 
valid indents. The k-means 
clustering of the valid indents 
are colour coded. The magenta 
circles highlight possibly 
debatable classification. The red 
dashed line encloses an area of 
strong surface damage. 

Fig. 3. Er- and H- contact depth profiles for Maps 1-5. The colour code of data points corresponds 
to the k-means clustering results in Fig 2. 
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