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Set of diagnostics, I

In the active phase, assuming small displacements of the interfaces and linearized shallow water
equations [Csanady [1977]]:
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giving U + U′ = 0



Two layer model, (Csanady [1977]):

Decomposition in two modes:
∂
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The free surface η and the interface η′ displacement is given by the combination of the baroclinic
and barotropic mode (neglecting inertial oscillations):

Free-surface displacement.
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Interface displacement.
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Set of diagnostics

Defining, mean quantity as follows:

{ϕ(x , z, t)} =
1

L

∫ y0+L

y0

ϕ(x , y , z, t)dy (3)

together with its fluctuation:

ϕ′(x , y , z, t) = ϕ(x , y , z, t)− {ϕ(x , z, t)} (4)

and applying the averaging procedure to the equations of motion, the time change of eddy kinetic
energy can be expressed as: ∫ L

O

∫ H

O
Ketdzdx = Cpke + Cmke + Diss. (5)

Energy conversion rates (Orlanski and Cox [1973]):
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Figure: Averaged simulated sea level anomaly compared
with the analytical solution from two-layer shallow
water equations in channel



The Baltic summer stratification

Initialization is representative of the summer
conditions with a developed thermocline at
20 m superimposed on the permanent
halocline at 60 m giving a two-pycnocline
structure, typical for the proper Baltic
during summer months. The stratification
profile is taken by CMEMS reanalysis.

Eigenvalue problem :

Rbc
∂2w(z)

∂2z2
−

N(z)2

f 2
w = 0 (8)

giving Rbc =8.13 km

Discrete 2 layer model :

h′ =20 m →Rbc =5.15 km
h′ =60 m →Rbc =12.2 km

Temperature/salinity profile:
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Onset of instabilities: downwelling, t ′ = 18

Energy conversion rates:
∫ L

O

∫ H

O
Ket dzdx = Cpke + Cmke + Diss. (9)
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baroclinic instability︷ ︸︸ ︷
{ρ′w′} dzdx (10)



Onset of instabilities: upwelling, t ′ = 12

Figure

Energy conversion rates:
∫ L

O

∫ H

O
Ket dzdx = Cpke + Cmke + Diss. (11)

Cpke (t) = −
g

ρ0A

∫ W

0

∫ 0

−h

baroclinic instability︷ ︸︸ ︷
{ρ′w′} dzdx (12)



Averaged conversion rates
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