

Censored Bernstein Quantile Networks for probabilistic precipitation forecasting

John Bjørnar Bremnes Norwegian Meteorological Institute

EGU General Assembly, 26 April 2023, Wien.

Bernstein Quantile Networks

... is a flexible method for distributional regression of continuous variables

- Bernstein polynomial as predictive quantile distribution
- **Neural network** to link distribution to input variables
- Estimation by minimising **quantile loss** averaged over predefined quantile levels

Bernstein Quantile Networks

... is a flexible method for distributional regression of continuous variables

- Bernstein polynomial as predictive quantile distribution
- Neural network to link distribution to input variables
- Estimation by minimising **quantile loss** averaged over predefined quantile levels

Statistical challenges with precipitation

Continuous variable with a (large) point mass at zero

- mixed distributed
- need special attention

Modelling options

- discretisation of precipitation \rightarrow categorical modelling
- separate models for the zeros (discrete) and the positive amounts (continuous)
 - predictive distribution by combination of the two models
- continuous model where zeros are treated as censored values
 - introduce a latent variable with no lower bound
 - adjust loss function
 - truncate at zero (negative part = probability of no precipitation)

Censored Bernstein Quantile Networks

Alternative 1

- make a model for probability of precipitation **p(x)**
 - neural network, logistic regression, use of ensemble/scenarios, climatology etc.
- 1st epoch of BQN training
 - compute quantile loss only over levels T and cases x where $p(x) > 1 - \tau$, $\forall \tau, x$
- Remaining epochs
 - compute quantile loss for positive quantiles, i.e. over levels T and cases x where $Q(\tau | x) > 0$, $\forall \tau, x$

Censored Bernstein Quantile Networks

Alternative 1

- make a model for probability of precipitation **p(x)**
 - neural network, logistic regression, use of ensemble/scenarios, climatology etc.
- 1st epoch of BQN training
 - compute quantile loss only over levels T and cases x where $p(x) > 1 - \tau$, $\forall \tau, x$
- Remaining epochs
 - compute quantile loss for positive quantiles, i.e. over levels T and cases x where $Q(\tau | x) > 0$, $\forall \tau, x$

Alternative 2

- all epochs
 - compute quantile loss for positive quantiles, i.e.
 over levels T and cases x where Q(τ|x) > 0, ∀τ,x
 - Note! random initialisation of network parameters implies random number of negative quantiles

Example: 6h-precipitation forecasting

Data

- 70 Norwegian stations
- 00+66h ECMWF ENS reforecasts (11 members)
 - ensemble means of total precipitation, convective precipitation, total column cloud liquid water, CAPE, wind at 700 hPa
 - standard deviation of total precipitation
 - probability of precipitation
- training (#22997), validation (#5758) and test (#5633) datasets

Example: 6h-precipitation forecasting

Data

- 70 Norwegian stations
- 00+66h ECMWF ENS reforecasts (11 members)
 - ensemble means of total precipitation, convective precipitation, total column cloud liquid water, CAPE, wind at 700 hPa
 - standard deviation of total precipitation
 - probability of precipitation
- training (#22997), validation (#5758) and test (#5633) datasets

Methods (variants of BQN)

- no censoring
- censoring with probability input (alternative 1) from
 - neural network
 - logistic regression
 - ensemble
 - climatology
- censoring without probability input (alternative 2)
- 2-model approach
 - Neural net for probability of precipitation
 - BQN for positive precipitation amounts

Model selection/tuning and testing framework

- extensive tuning of each method on validation dataset
 - 4320 configurations trained and evaluated
- 5 best configurations of each method re-trained 5 times
 - predictions on test dataset (#5×5×5633)

Results

	Quantile Skill Score (%)				
BQN method	Overall	Extremes*			
No censoring	-0.35	0.16			
Censoring: Neural net	0.79	1.38			
Censoring: Logistic reg.	0.53	0.33			
Censoring: Ensemble prb	0.53	0.69			
Censoring: Climate	0.45	0.35			
Censoring	0.15	-0.32			

2-model approach applied as reference

*) Extremes = 3 most extreme ENS cases for each station, 3×70 = 210 cases

Results

	Quantile Skill Score (%)		Brier Skill Score (%)			
BQN method	Overall	Extremes*	0 mm	0.05 mm	0.1 mm	10 mm
No censoring	-0.35	0.16	-215.80	-5.24	-3.54	-0.14
Censoring: Neural net	0.79	1.38	-2.24	-2.51	-2.65	0.79
Censoring: Logistic reg.	0.53	0.33	-1.86	-2.04	-2.13	0.13
Censoring: Ensemble prb	0.53	0.69	-1.38	-1.44	-1.50	0.03
Censoring: Climate	0.45	0.35	-1.89	-2.00	-2.04	0.44
Censoring	0.15	-0.32	-3.48	-3.83	-3.98	0.14

2-model approach applied as reference

*) Extremes = 3 most extreme ENS cases for each station, 3×70 = 210 cases

Conclusions

Extending BQN to precipitation forecasting by means of censoring works very well

- at least as good as the 2-step modelling approach wrt quantile score
- using a probability of precipitation as input has a slightly positive impact
 - \circ less important how it is derived

Non-censored BQN works satisfactorily

- except for very small/traces of precipitation amounts
 - adhoc truncation of very small precipitation amounts may help though