Study of the evolution of interplanetary coronal mass ejections in the inner heliosphere C. Larrodera (@Solar_mole), M. Temmer

Abstract

The launch of new spacecraft such as Parker Solar Probe or Solar Orbiter allow us to measure in-situ at different radial distances the physical magnitudes of ICMEs. With that, we are able to quantify the evolution of ICMEs and their substructures at a specific radial distance in order to better understand the background solar wind. Using multiple spacecraft covering the inner heliosphere, we extract plasma and magnetic field parameters from several ICMEs to relate the physical processes responsible for the different substructures. We present first results for some ICME parameters that prepare for a large statistical analysis.

ntroduction						Substructures duration		
We have gathered After removing ove According to the ca The rest consists o Breakdown of eve	ICMEs from 13 catalogs erlaps, the final number of I atalogs, 56 % show clear sh nly of magnetic ejecta strue	at different rad CMEs is 2163 eath structu ctures.	lial distances from ICMEs. res followed by a	n 1975 until 2022. n magnetic ejecta.	 Temme 5.2h a AU. The du Kilpua 	er and Bothmer (2022 and 17.7h for sheath uration for r>0.7 AU et al. (2013) obtaine	2) derive a duration and ME for r < is 6.8h and 26.5 d 9.1h and 20.6 d	
Spacecraft	Min date Max date M	lin dist (AU)	Max dist (AU) Events			7) [0 7 1 1]	
Helios	1975-01-08 1980-07-21	0.29	0.98	95	Substru	icture $r = [0.25, 0.7]$	r = [0.7, 1.1]	
ULYSSES	1991-03-05 2007-09-06	1.35	5.42	185	Shea NAO (CL	4.1 ± 3.1	9.6±6.5	
Wind	1995-02-07 2022-09-30	0.97	1.02	606	IVIO (Sh	leath) 12.0 ± 0.0	24.5 ± 13.8	
ACE	1997-09-21 2022-09-12	0.97	1.00	531		J 12.8±8.8	22.1±12.9	
STEREO-B	2006-12-14 2014-09-25	0.98	1.09	157				
STEREO-A	2007-01-14 2022-10-21	0.96	0.97	292		substructure densit	cy evolution	
VEX	2007-02-13 2014-09-26	0.72	0.73	93				
MESSENGER	2007-05-04 2015-04-22	0.31	0.74	87	► The ev	olution has been fitte	a by $IV = or^{0}$	
MAVEN	2015-01-18 2017-07-04	1.39	1.66	10	For the	e magnetic ejecta f	ollowing the shea	
Parker Solar Probe	e 2018-10-30 2022-02-16	0.25	0.91	36	Schw	venn and Marsch (199	(0); I emmer and (0); I emmer and (0); I emmer and (0)	
Bepi Colombo	2019-03-25 2022-09-27	0.35	1.03	32	Both	mer (2022); Leitner e	t al. (2007) obtai	
Solar Orbiter	2020-04-16 2020-09-06	0.42	1.01	39	$\beta = -2$	Z.4	abia Q = 0.07	
					Ear th	value from our researc	2n is $p=-2.07$	
Spacecraft conjun	ction					e sneath.	(2)	
We search for space The requirements a As a validation of c Möstl et al. (2022)	ecraft conjunctions in order are ICMEs detected within our methodology, we found	to find ICMEs a range of ± 5 conjunctions a	s seen by more the days and ± 20 of already studied, e.	an one spacecraft. ^F longitude. .g. Kilpua et al. (2	021); Vienni obtai ► Our Kilpua ICMEs	Surements from Helios ined β =[-1.5,-1.7]. result is β =-2.14. et al. (2017), using r between 0.3 AU and	1/2 and PSP, neasurements from 11 AU. obtained	
vve lound 25 ever	its as a set for analyzing th	le case study			$\beta = -2.2$	21		

References

E. K. J. Kilpua, A. Isavnin, A. Vourlidas, H. E. J. Koskinen, and L. Rodriguez. On the relationship between interplanetary coronal mass ejections and magnetic clouds. Annales Geophysicae, 31(7):1251–1265, July 2013. E. K. J. Kilpua, S. W. Good, N. Dresing, R. Vainio, E. E. Davies, R. J. Forsyth, J. Gieseler, B. Lavraud, E. Asvestari, D. E. Morosan, J. Pomoell, D. J. Price, D. Heyner, T. S. Horbury, V. Angelini, H. O'Brien, V. Evans, J. Rodriguez-Pacheco, R. Gómez Herrero, G. C. Ho, and R. Wimmer-Schweingruber. Multi-spacecraft observations of the structure of the sheath of an interplanetary coronal mass ejection and related energetic ion enhancement. Astronomy & Astrophysics, 656:A8, December 2021.

Emilia Kilpua, Hannu E. J. Koskinen, and Tuija I. Pulkkinen. Coronal mass ejections and their sheath regions in interplanetary space. Living Reviews in Solar Physics, 14(1):5, November 2017. M. Leitner, C. J. Farrugia, C. Möstl, K. W. Ogilvie, A. B. Galvin, R. Schwenn, and H. K. Biernat. Consequences of the force-free model of magnetic clouds for their heliospheric evolution. Journal of Geophysical Research (Space Physics), 112(A6):A06113, June 2007. Christian Möstl, Andreas J. Weiss, Martin A. Reiss, Tanja Amerstorfer, Rachel L. Bailey, Jürgen Hinterreiter, Maike Bauer, Davies, Richard A. Harrison, Johan L. Freiherr von Forstner, Emma E. Davies, Richard A. Harrison, Johan L. Freiherr von Forstner, Emma E. Davies, Daniel Heyner, Tim Horbury, and Stuart D. Bale. Multipoint Interplanetary Coronal Mass Ejections Observed with Solar Orbiter, BepiColombo, Parker Solar Probe, Wind, and STEREO-A. Astroph. Journal letters, 924(1):L6, January 2022. Rainer Schwenn and Eckart Marsch. *Physics of the Inner Heliosphere I. Large-Scale Phenomena.* 1990. M. Temmer and V. Bothmer. Characteristics and evolution of sheath and leading edge structures of interplanetary coronal mass ejections in the inner heliosphere based on Helios and Parker Solar Probe observations. Astronomy & Astrophysics, 665:A70, September 2022.

Institute of Physics (Heliospheric Physics Research Group), University of Graz, Austria

- th: ined

	r=[0.25,0.7] AU
	r=[0.7,1.1] AU
20 40	60 80 100 Duration (h)
	Sheath MO_Sheath MO
10 ⁰	Dist (AU)