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INPs [L-1] observed during CALISHTO

Paraskevi Georgakaki1, Anne-Claire Billault-Roux2, Romanos Foskinis3,4,5, Kunfeng Gao1, Eliot Perrin1, Georgia Sotiropoulou1,5, Franziska Vogel6, Maria Gini4, 
Konstantinos Eleftheriadis4, Ottmar Moehler6, Satoshi Takahama1, Alexis Berne2, and Athanasios Nenes1,5

1 Laboratory of Atmospheric Processes and their Impacts (LAPI), EPFL, Lausanne, Switzerland, 2 Environmental Remote Sensing Laboratory (LTE), EPFL, Lausanne, Switzerland, 3 Laser Remote Sensing Unit (LRSU), National Technical University of Athens, Zografou, Greece, 
4 Center for Studies of Air Quality and Climate Change (C-STACC), FORTH, Patras, Greece, 5 ERL, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre of Scientific Research “Demokritos”, Ag. Paraskevi, Greece, 6 Institute of 
Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

paraskevi.georgakaki@epfl.ch, athanasios.nenes@epfl.chPyroTRACH

Unraveling secondary ice production in winter orographic clouds through a synergy of in-situ 
observations, remote sensing and modeling

How can secondary ice production (SIP) affect orographic 
clouds 

✓ SIP can be an important source of ice particles in orographic 
mixed-phase clouds (MPCs), resulting in ice crystal number 
concentrations (ICNCs) that exceed the number of ice 
nucleating particles (INPs) in the surrounding environment by 
several orders of magnitude

✓ Changes in the ice- and liquid-phase partitioning in MPCs can 
enhance or suppress orographic precipitation, which remains 
a challenge to accurately represent in models

Which tools did you use to study the storm Carmel

On December 18, 2021, a low-pressure system named "Carmel" 
caused an intense snowfall event at Mount Helmos in 
Peloponnese, Greece, which was recorded during the CALISHTO
(Cloud-AerosoL InteractionS in the Helmos background 
TropOsphere) campaign. From Fall 2021 to Spring 2022, the 
campaign was conducted with the aim of studying aerosol-cloud 
interactions in warm and MPCs. In this study we used:
✓ Cloud in-situ and INP measurements performed by a PVM100

cloud probe and the Portable Ice Nucleation Experiment (PINE) 
instrument, respectively, at the mountaintop Helmos Hellenic 
Atmospheric Aerosol and Climate Change (HAC)2 station

✓ Radar equivalent reflectivity factor and mean Doppler velocity 
measured by WProf – a vertically-pointing W-band (94 GHz) 
Doppler cloud radar on the leeside of (HAC)2
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Did you find an interesting event to study
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We use the mesoscale Weather Research and Forecasting (WRF) 
model, with three domains of horizontal resolutions of 12, 3, and 
1 km, respectively. To quantify the effect of SIP we perform 3 
sensitivity simulations:
✓ CONTROL: No SIP processes are accounted for, while primary ice 

production (PIP) follows the simplified temperature dependent 
relationships included in the default version of WRF

✓ DEMOTT: The PIP schemes are replaced by DeMott et al. (2010; 
DM10) constrained by temperature and the number concentration 
of particles > 0.5 μm aerodynamic diameter measured at (HAC)2

✓ ALLSIP: PIP follows DM10, with additional descriptions of SIP 
through HM, BR (Phillips et al., 2017; Sotiropoulou et al., 2021), 
DSH (Phillips et al., 2018; Georgakaki et al., 2022) and SBR 
(Deshmuch et al., 2022)

Did SIP contribute to the simulated ICNCs during this storm

✓ The ALLSIP simulation predicts up to 2 orders of magnitude 
enhanced ICNCs compared to CONTROL and DEMOTT, especially at 
temperatures > -15˚C 

✓ SIP is most pronounced under the "seeder-feeder" configuration, 
where large precipitating ice particles from high-level synoptic 
clouds fall into low-level orographic clouds
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Is there a way to compare your simulations against the radar 
observations

Sure! Coupling WRF with the Cloud Resolving Model Radar SIMulator 
(CR-SIM; Oue et al., 2020) allows us to emulate radar observables, 
such as the equivalent radar reflectivity (Zew), and compare them 
directly against the WProf measurements. Below we can see:
✓ Increased Zew produced by ALLSIP at heights below 1 km →

enhanced orographic precipitation
✓ At higher altitudes ALLSIP predicts decreased Zew due to a shift in 

the size distribution of ice particles towards smaller sizes
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Are there any SIP signatures in the radar dataset

✓ The radar signatures indicate SIP processes (Billault-Roux et al., 
2023) when ALLSIP predicts it to happen → precipitation 
predictions are improved for the right reason

Vertical distribution of INCs is distinctly different between simulations 
with primary ice only and with SIP. This is a profoundly important 
reason to include SIP processes for improved orographic precipitation 
in models
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