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1. Introduction

The next generation of weather and climate models will need to run
increasingly complex simulations whilst meeting a wall-clock time constraint.
A way to achieve this, without excessive computational power, is the use of
a larger time-step, ∆t. However, this is challenging to implement in time-
stepping algorithms. Explicit methods have stability time-step limits from
the fastest wave oscillations. Implicit methods have increased stability
regions, but lose accuracy with larger time-steps.
The presence of multiple time-scales increases the numerical complexity of
weather and climate models. Additionally, the nonlinear terms introduce
slow phase shifts that can be missed with a large ∆t. Figure 1 demonstrates
this for the Rotating Shallow Water Equations (RSWEs); a Gaussian height
perturbation disperses and reforms more times in the nonlinear system.

Fig. 1: A 1D Gaussian perturbation in the RSWEs. The nonlinear case (bottom) has ten reformations,
whereas the linear (top) only has nine.

The standard formulation of weather and climate-type PDEs is,

∂u

∂t
+
1

ϵ
Lu = N (u), ϵ ∈ R, ϵ ̸= 0 (1)

We consider an L which generates purely oscillatory linear behaviour, with
frequencies on aO(ϵ) time-scale. When ϵ is small, we expect fast oscillations;
when ϵ ∼ O(1) the oscillations are slower. A small ϵ, as is present in many
weather and climate applications, leads to strict explicit time-step limits.
We present two types of analysis. An analytical analysis of a nonlinear
‘triadic error’ provides comparisons of time-steppers based on their stability
polynomials. Test cases enable a numerical analysis of any time-stepper in
a given model. Three models are examined numerically: A pseudospectral
model, Gusto (compatible finite elements), and LFRic (MetOffice).

3. Analytical Analysis: The Triadic Error

We map the standard form of Eq. (1) to a space without O(ϵ) oscillations [Sch92; EM96]:

u(x, y, t) = e−tLv(x, y, t) (5)
∂v

∂t
= etLN (e−tLv, e−tLv) (6)

In this alternative basis, we can find an evolution equation for spectral coefficients that
only has contributions from triads; these are sets of three waves that satisfy k = ka+kb.
We identify the temporal evolution of these triads through the triadic propagator, T ,

T (Ω, t) = eiΩ
α,αa,αb
k,ka,kb

t, Ωα,αa,αbk,ka,kb = ωαaka + ωαbkb − ωαk (7)

where the triadic frequency, Ω, is a function of the three wavenumbers and modes (α).

•Direct resonances occur when Ω = 0. These construct long-time dynamics and are
the only remaining interactions when ϵ→ 0 [EM96].

•Near resonances have a small, but non-zero, Ω. For finite values of ϵ, like in Eq. (1),
these have an important contribution [New69; SW01].

•We analyse the dominant subset of triads over a certain time-scale, by computing errors
for all interactions satisfying |Ω| ≤ ΩC.

We now consider the oscillatory Dahlquist test equation [Dur10]:
du

dt
= iωu → u(t +∆t) = eiω∆tu(t) (8)

A time-stepper’s approximation to eiω∆t is given by its stability polynomial, P (iω∆t).
Combining each contribution in the triad obtains the numerical representation, TN ,

TN(Ω,∆t) = P (iωαaka
∆t)P (iωαbkb

∆t)P (−iωαk∆t) (9)

The triadic error, E, is the difference over one time-step between this approximation of
the triadic propagator and the true expression: E(Ω,∆t) = ∥T (Ω,∆t)− TN(Ω,∆t)∥.
In the RSWEs, we compare five time-stepping methods—RK4, Crank-Nicolson, AB3, TR-
BDF2, and ETD-RK2—for differing ΩC. ΩC = 0.1 only contains direct resonances for our
example discretisation (32 by 32). ΩC = 5 contains a large number of near-resonances.

Fig. 2: Comparisons at ΩC = 0.1 Fig. 3: Comparisons at ΩC = 5

4. Numerical Analysis: Test Cases

Test Case 1: Gaussian ICs

The first test case contains a Gaussian height perturbation, which disperses and reforms
over the entire simulation. Large time-steps can induce phase errors in the form of incorrect
reformation times of the Gaussian (Fig. 4). This is diagnosed by computing a spectral
error, which quantifies the accuracy of the kinetic energy exchange (Fig. 5).

Fig. 4: The pseudospectral Gaussian height field at

t = 20, using large-time steps with TR-BDF2.

Fig. 5: Spectral errors for the five time-steppers in

Section 3, for the pseudospectral simulations.

Test Case 2: Triadic ICs

These initialise linear waves, of specific wavenum-
bers and modes (α), to excite certain triads.
Test Case 2a only initialises one fast wave and
one slow wave. A third fast wave will form to
complete a directly resonant triad.
Test Case 2b initialises two fast waves of equal
wavenumber and several slow waves. This enables
a redistribution of the fast wave energy into rings
in wavenumber space (Figure 6).
A height field difference, relative to a fine time-
step solution, is used to quantify phase errors.

Fig. 6: Fast mode energy in wavenumber space, for

Test Case 2b, at the initial and final states.

Fig. 7: Test Case 2a with Gusto (Compatible FEM) Fig. 8: Test Case 2b with LFRic (MetOffice)

2. The RSWEs:

We consider a rotating fluid in a doubly periodic domain, with no topography,
Du

Dt
+ f k̂× u + g∇η = 0 (2)

∂η

∂t
+∇ · (ηu) +H0(∇ · u) = 0 (3)

where g is the gravitational force,H0 is the mean height, and f is the constant
value of rotation [Val17]. There are three dispersion relation branches,
α ∈ {−1, 0,+1}, corresponding to fast (±1) and slow (0) modes,

ωαk = αψk, ψk =
√
f 2 + γ2|k|2 = 1

ϵ

√
1 + |k|2, |k| =

√
k2 + l2 (4)

Analytical Conclusions

•Higher order Runge-Kutta (RK) schemes have increased triadic accuracy. RK4 performs
relatively better than TR-BDF2 with a larger number of near-resonant triads.

•CN has zero error for direct resonances. It generates increasingly larger errors than
TR-BDF2 as more near-resonances are considered.

•AB3 has relatively large errors, even when disregarding its computational modes.

•ETD schemes commit zero triadic error, as use an exact form of the linear terms.

Numerical Conclusions

•Test case 1 shows how the increased stability of implicit methods often comes at the
cost of larger phase errors in the nonlinear dynamics.

• In the pseudospectral model, ETD-RK2 performs very well for a second-order scheme.

• In Gusto and LFRic, RK4 performs the best, then SSPRK3, at stable time-steps.

•For test case 2, the implicit methods already have completely out-of-phase solutions
with moderate time-steps. Larger time-steps increase the frequency of this phase error.
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