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1. Introduction

Geopotential Height

Nonlinear |:

2. The RSWEs:

We consider a rotating fluid in a doubly periodic domain, with no topography;,

Du ~
— k Vn =20
Dt+f X u+gVn

)
S+ V- () + Ho(V - a) =0

where ¢ is the gravitational force, H is the mean height, and f is the constant
value of rotation [Vall7]. There are three dispersion relation branches,
a € {—1,0,+1}, corresponding to fast (£1) and slow (0) modes,

1
Wy = i, ¢k=\/f2+72lkl2=g\/1+|kl2a k| = VE -+ (4)
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3. Analytical Analysis: The Triadic Error

We map the standard form of Eq. (1) to a space without O(e) oscillations [Sch92; EM96]:

u(w,y,t) = e “v(z,y,t) (5)
g—: — N (e v, e ) (6)

In this alternative basis, we can find an evolution equation for spectral coeflicients that
only has contributions from triads; these are sets of three waves that satisty k = k, + k;,.
We identify the temporal evolution of these triads through the triadic propagator, 7'

- 0,

T(Q,1) = ¢ ko, Qe = Wl + Wi — Wi (7)
where the triadic frequency, €2, is a function of the three wavenumbers and modes («).

¢ Direct resonances occur when {) = 0. These construct long-time dynamics and are
the only remaining interactions when ¢ — 0 [EM96].

e Near resonances have a small, but non-zero, €. For finite values of ¢, like in Eq. (1),
these have an important contribution [New69; SW01].

e We analyse the dominant subset of triads over a certain time-scale, by computing errors
for all interactions satisfying 2| < Q.

We now consider the oscillatory Dahlquist test equation [Durl0):

d |
T ou = u(t + At) = e#a(t) (8)

dt
A time-stepper’s approximation to e“?! is given by its stability polynomial, P(iwAt).

Combining each contribution in the triad obtains the numerical representation, 1y,
Th(Q,At) = P(iwﬁ:At)P(iwﬁzﬁt)P(—iwﬁ‘At) (9)

The triadic error, E', is the difference over one time-step between this approximation of

the triadic propagator and the true expression: E(€2, At) = ||T(Q2, At) — T (€2, At)]|.

In the RSWESs, we compare five time-stepping methods—RK4, Crank-Nicolson, AB3, TR-

BDF2, and ETD-RK2—for differing {)~. {2 = 0.1 only contains direct resonances for our
example discretisation (32 by 32). Q¢ = 5 contains a large number of near-resonances.
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Analytical Conclusions

e Higher order Runge-Kutta (RK) schemes have increased triadic accuracy. RK4 performs
relatively better than TR-BDF2 with a larger number of near-resonant triads.

e CN has zero error for direct resonances. It generates increasingly larger errors than
TR-BDF2 as more near-resonances are considered.

e AB3 has relatively large errors, even when disregarding its computational modes.

e E'T'D schemes commit zero triadic error, as use an exact form of the linear terms.
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4. Numerical Analysis: Test Cases

Test Case 1: Gaussian ICs

The first test case contains a Gaussian height perturbation, which disperses and reforms
over the entire simulation. Large time-steps can induce phase errors in the form of incorrect
reformation times of the Gaussian (Fig. 4). This is diagnosed by computing a spectral
error, which quantifies the accuracy of the kinetic energy exchange (Fig. 5).
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Test Case 2: Triadic ICs

These initialise linear waves, of specific wavenum-
bers and modes («), to excite certain triads.
Test Case 2a only initialises one fast wave and
one slow wave. A third fast wave will form to
complete a directly resonant triad.

Test Case 2b initialises two fast waves of equal
wavenumber and several slow waves. This enables
a redistribution of the fast wave energy into rings
in wavenumber space (Figure 6).

A height field difference, relative to a fine time- Fig. 6: Fast mode energy in wavenumber space, for
step solution, is used to quantify phase errors. Test Case 2b, at the initial and final states.
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Fig. 7: Test Case 2a with Gusto (Compatible FEM) Fig. 8: Test Case 2b with LFRic (MetOffice)

Numerical Conclusions

e Test case 1 shows how the increased stability of implicit methods often comes at the
cost of larger phase errors in the nonlinear dynamics.

In the pseudospectral model, ETD-RK2 performs very well for a second-order scheme.

In Gusto and LFRic, RK4 performs the best, then SSPRK3, at stable time-steps.

For test case 2, the implicit methods already have completely out-of-phase solutions
with moderate time-steps. Larger time-steps increase the frequency of this phase error.




