

Friedrich-Alexander-Universität **Faculty of Sciences**

A new, high-resolution climatological atmospheric dataset for southern New Zealand

Elena Kropač¹ (elena.kropac@fau.de), Thomas Mölg¹, Nicolas J. Cullen²

¹ Institute of Geography, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany ² School of Geography, University of Otago, Dunedin, New Zealand

1. Motivation

▲ Figure 1 | Interaction of maritime air masses with the Southern Alps and their effect on mountain glaciers (red).

The regional climate of New Zealand's South Island is shaped by the interaction of the Southern Hemisphere westerlies with the complex orography of the Southern Alps (Fig. 1). Due to the geographical setting of New Zealand in the south-west Pacific, the characteristics of the transported air masses and the regional circulation itself are strongly influenced by the surrounding oceans. Therefore, variations in sea surface temperature (SST) are reflected on a variety of spatial and temporal scales and are statistically detectable through to temperature anomalies and glacier mass balance changes in the high mountains of the Southern Alps. The relationship between SST and high-mountain climate has not yet been investigated from a process perspective, leaving the underlying physical mechanisms that transmit large-scale SST signals to local climate anomalies and glacier mass changes unknown. We have generated a new, high-resolution atmospheric data set to investigate the processes in question.

- **Model:** Weather Research and Forecasting (WRF) model
- **Forcing data:** ERA5 reanalysis (31 km)
- Modeling period: 2005–2020
- **Domain setup:** Fig. 2
- Horizontal grid spacing: 10 km (d01) and 2 km (d02)
- **Output frequency:** Daily (d01) and 3-hourly (d02)

Mean atmospheric water content in d02

- **Computation time:** 33 days
- Core hours used: 1.74 mio.
- Output size: 8.2 TB

3. Results

using MODIS AQUA imagery (498 images) of Cloud Water Path (from MODIS cloud product MYD06_L2; 1 km resolution)

① Only images that fully cover D2 and are in a ± 30 min time window of a WRF output time were considered. MODIS TERRA did not provide images matching the requirements.

air temperature	102	93	8	1
Monthly total rainfall	235	212	22	1
Monthly mean global radiation	60	57	2	1
Monthly mean vapor pressure	87	80	6	1
Monthly mean sea level pressure	68	65	3	0

The model represents variability in both near-surface meteorological conditions (Figs. 3 and 4) and atmospheric water content (Fig. 5) generally well, although there are both seasonal and spatial biases. High-mountain climate is well captured where the model output can be compared against observations. Despite of the simulation's high spatial resolution, real topography and model topography differ considerably in altitude in many locations so that several stations located in complex terrain could not be reasonably compared against modeled values. The local climate at Brewster Glacier (where landuse and topographic conditions have been optimized) is remarkably well represented on both

seasonal and daily timescales (Fig. 6). Very local features like glacier winds, however, are not captured (not shown).

Monthly mean surface climate in d02

Mean atmospheric water content in d02

47°S

Figure 5 | Comparison of Cloud Water Path (CWP) between the WRF simulation (2 km) and MODIS AQUA imagery (1 km). CWP is calculated as the arithmetic mean over all suitable MODIS images (see methods) within the modeling period 2005– 2020, as well as over the respective closest WRF

▲ Figure 3 | Comparison of monthly means/sums of selected meteorological variables to a network of weather stations for the full modeling period 2005–2020. The size of the circles indicates the percentage of months available for evaluation at each station (≤25%, ≤50%, ≤75%, ≤100%).

output times (always 3 am). MODIS data are regridded to the WRF data.

◀ Figure 4 | Frequency

distribution of selected

statistics describing the

evaluation of WRF output

vs. station measurements

considered variables (see

methods) in 2005–2020.

Colors indicate different

spatial statistical

(Fig. 3) for monthly

means/sums of all

altitude ranges.

High Performance Computing

