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1. Background



1. Background

The estimation of Fine Fuel Moisture Content (FFMC) is a key factor in any Forest Fire Danger Rating
System, to determine ignition-prone fuel conditions and fire behavior. The difficulty in obtain frequent and 
spatialized real-time measurements of FFMC leads to the use of models to assess and predict it.

The FFMC model represents the core and dynamic component of RISICO [4], the Forest Fire Danger Rating System 
used operatively by the Italian Civil Protection Department and developed in 2000 by CIMA Research Foundation.

 
In the framework of the new release of RISICO in 2023, the FFMC model has been reformulated and calibrated on 
the basis of fuel stick data.

In this presentation:

1. the calibration procedure on fuel stick data is presented, with a description of the new FFMC model;

2. the results of FFMC model performance on past wildfires events in Italy from 2007 to 2021 are presented.
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Fuel stick data has been collected from 5 fuel sticks allocated in Israel (see 
[1]).  Data refers from 2017 to 2021. 

We thank the authors of the paper for sharing the data with us.

2.1.1. Data Collection and Analysis

2.1. Fuel Stick Data

[1] Shmuel, A., Ziv, Y., & Heifetz, E. (2022). Machine-Learning-based evaluation of the time-lagged effect of meteorological factors on 10-hour dead fuel moisture 
content. Forest Ecology and Management, 505, 119897. 

Latitude Longitude Altitude [m] Distance from the sea 
[km]

Zefat Mt. 
Kenaan

35.5070 32.9800 936 38

Zova 35.1203 31.7803 715 43

Afula Nir 
Haemeq

35.2769 32.5960 60 33

Gamla 35.7484 32.9056 405 63

Nahshon 34.9544 31.8308 180 26



2.1. Fuel Stick Data

7

The 5 fuel sticks have been located next to meteorological stations. 

Rain
[mm]

Time series of 
weather  

conditions 
and fuel 
moisture

Temperature
[°C]

Wind 
Speed 
[m/s]

Air 
Humidity
[%]

Variable of interest:
Fuel Moisture Content

Measuring instrument:
Campbell [2] Fuel Stick

Data has been provided at 
1 hour time resolution

Fuel sticks are often used for wildfire 
danger forecasting systems, providing 
real-time data of fuel moisture.

2.1.1. Data Collection and Analysis

26601 10-hour Fuel 
Moisture Stick

CS506 Fuel 
Moisture Sensor

[2] Fuel Stick brochure - Campbell Scientific 
https://www.campbellsci.com/pn26601



2.1. Fuel Stick Data

The fuel stick measures 

fuel moisture calculated as 

the water content over the 

dry fuel weight (FFMC dry).

The original FFMC model of 

RISICO simulates the water 

content over the total weight 

(FFMC).

For this reason, the following fuel moisture measures are reported with respect to the total weight, according to the 

proper conversion.

W: Water content [g]

F: fuel weight in dry conditions [g]

2.1.1. Data Collection and Analysis



2.1. Fuel Stick Data

Fuel Moisture time span Completeness * Continuity **

Zefat Mt. 
Kenaan

04.2018–07.2021 0.689 0.999

Zova 04.2017–07.2021 0.935 0.998

Afula Nir 
Haemeq

04.2017–01.2021 0.812 0.999

Gamla 08.2017–07.2021 0.804 0.999

Nahshon 05.2017–02.2021 0.851 0.998

A time interval is valid if composed by all valid times.

**The continuity index is 1 for a continuous 
time-series, while it is zero for a time series that 
alternates missing data with valid data

*The completeness index is 1 if all the data are 
present for each time of the timeseries.

A time instant is valid if all weather data are present.These time series cover a wide range of weather 
conditions thanks to their continuity and 

completeness, and their length of about 4 years.

2.1.1. Data Collection and Analysis



2.1. Fuel Stick Data

● Zefat Mt. Kenaan

Variables distribution2.1.1. Data Collection and Analysis



2.1. Fuel Stick Data

● Zova

2.1.1. Data Collection and Analysis Variables distribution



2.1. Fuel Stick Data

● Afula Nir Haemeq

Variables distribution
2.1.1. Data Collection and Analysis



2.1. Fuel Stick Data

● Gamla

Variables distribution2.1.1. Data Collection and Analysis



2.1. Fuel Stick Data

● Nahshon

Variables distribution2.1.1. Data Collection and Analysis



2.1. Fuel Stick Data
2.1.2. Time-serie Sampling

Sub-timeseries have been sampled.

Three groups of sub-time-series have been selected:

1. No-rain: time-series without rain to calibrate the no-rain phase
2. Rain: time-series with rain have to calibrate the rain phase
3. Mixed: generic time-series to evaluate the final calibrated model

Sampling method: stochastic
Sampling criteria

No-rain phase Rain phase Mixed

Timeseries length 240 h (10 days) 6 h 240 h (10 days)

Presence of rain no yes, for all the times not strictly requested

Distance from no-data 24 h 24 h 24 h

Minimum temperature 0 °C 0 °C 0 °C

Buffer between timeseries 72 h (3 days) 6 h 120 h (5 days)

Number of sampling 277 351 408

1. data clusters that meet the 
selection criteria are identified

2. a cluster is randomly drawn from 
possible clusters

3. the time-serie is selected from the 
cluster and removed from the 
possible choices

4. the procedure is repeated until 
possible clusters are available



2.1. Fuel Stick Data
2.1.2. Time-serie Sampling

No-rain Rain Mixed

Number of samples

No rain Rain Mixed

Zefat Mt. Kenaan 46 89 67

Zova 64 58 92

Afula Nir Haemeq 53 61 86

Gamla 58 79 81

Nahshon 56 64 82

As expected, the no-rain samples are mostly from 
Summer period, while rain samples are from Spring 
and Winter period.



2.1. Fuel Stick Data
2.1.3. Time-serie Clustering

Method: K-means [3]

Metric: Dynamic Time Warping (DTW)

Number of clusters: 3

Variable for clustering: Fuel Moisture

For each group of timeseries, clusters are computed. Data clustering has been performed to:
1. identify structures on the timeseries
2. select properly the datasets for 

calibration and validation

[3] Aghabozorgi, S., Seyed Shirkhorshidi, A., & Ying Wah, T. (2015). Time-series 
clustering - A decade review. Information Systems, 53, 16–38. 
https://doi.org/10.1016/j.is.2015.04.007

Cluster 0 Cluster 1

Cluster 2



2.1. Fuel Stick Data

Number 
of 

samples

Mean values

Fuel 
Moisture

[%]

Air 
Humidity

[%]

Temperature
[°C]

Wind speed
[m/s]

Cluster 0 142 (51%) 9.98 65.90 24.42 2.59

Cluster 1 39 (14%) 10.39 56.38 15.65 3.75

Cluster 2 96 (35%) 7.46 51.99 23.26 3.07

CLUSTER 0: the biggest cluster, characterized by time-serie samples in 
Summer, with low values of fuel moisture

CLUSTER 1: the smallest cluster, with time-series in Spring, Autumn or Winter 
very close to rains (less than 2 hours from the last registered rain)

CLUSTER 2: especially in Spring and Summer, very low values of fuel moisture

N
o-

ra
in

 s
am

pl
es

Clusters statistics

2.1.3. Time-serie Clustering



2.1. Fuel Stick Data
N

o-
ra

in
 s

am
pl

es

CLUSTER 0: regular behavior, alternating 
between absorption and desorption of 
moisture 

CLUSTER 1: after-rain behavior, with a 
decrease in moisture content

CLUSTER 2: low values of moisture, not 
particularly regular behavior

Clusters plot

Timeseries
Centroid of the cluster 
(only for fuel moisture)

2.1.3. Time-serie Clustering



2.1. Fuel Stick Data

Number of 
samples

Mean values

Fuel 
Moisture

[%]

Rain
[mm/h]

Air 
Humidity

[%]

Temperature
[°C]

Wind speed
[m/s]

Cluster 0 85 (24%) 26.86 1.95 89.75 10.92 4.79

Cluster 1 151 (43%) 33.43 2.25 95.64 9.21 4.94

Cluster 2 115 (33%) 39.40 1.92 97.10 8.39 4.72

As expected, all the clusters are referred to timeseries near 
rains (or inside rain events), in Spring/Winter period, with high 
values of fuel moisture

R
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n 
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m
pl

es

Clusters statistics

2.1.3. Time-serie Clustering



2.1. Fuel Stick Data
R

ai
n 

sa
m

pl
es CLUSTER 0: fuel moisture is increasing 

from low values due to rain events

CLUSTER 1: fuel moisture is increasing 
from previous quite high fuel 
moisture values

CLUSTER 2: fuel moisture is not 
increasing, since it is already near the 
saturation values

Timeseries
Centroid of the cluster 
(only for fuel moisture)

Clusters plot

2.1.3. Time-serie Clustering



2.1. Fuel Stick Data

Number 
of 

samples

Mean values

Fuel 
Moisture

[%]

Rain
[mm/h]

Air 
Humidity

[%]

Temperature
[°C]

Wind speed
[m/s]

Cluster 0 72 (18%) 18.69 0.19 75.23 11.95 3.40

Cluster 1 261 (64%) 9.22 0.004 60.87 23.0 2.88

Cluster 2 75 (18%) 16.63 0.17 72.93 19.95 3.33

M
ix

ed
 s

am
pl

es

CLUSTER 0: characterized by time-serie samples in Spring or Winter, with high 
values of fuel moisture

CLUSTER 1: the biggest cluster, with time-series mainly in Summer period, and 
with very low values of fuel moisture

CLUSTER 2: similar to cluster 0; characterized by time-serie samples in Spring or 
Winter, with high values of fuel moisture

Clusters statistics

2.1.3. Time-serie Clustering



2.1. Fuel Stick Data
M
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ed
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es

CLUSTER 0: characterized by quite 
high values of fuel moisture, with a 
decreasing behavior 

CLUSTER 1: regular behavior, with 
low values of fuel moisture (no or 
few rain)

CLUSTER 2:  characterized by quite 
high values of fuel moisture

Timeseries
Centroid of the cluster 
(only for fuel moisture)

Clusters plot

2.1.3. Time-serie Clustering



2.1. Fuel Stick Data
2.1.4. Calibration and Validation Datasets

● The No-rain and Rain groups of samples have been then splitted into a calibration dataset (80%) and validation 
dataset (20%), maintaining for each of the two datasets the same distribution of clusters identified in the initial 
dataset.

● The mixed group have been all used for validation of the calibrated model.

Number of samples

Calibration Validation

No-rain 220 54

Rain 280 70

Mixed / 408

Cluster 0 Cluster 1 Cluster 2
Calibration

Validation



2.1. Fuel Stick Data
2.1.4. Calibration and Validation Datasets

Data distribution
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2.1. Fuel Stick Data
2.1.4. Calibration and Validation Datasets
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Data distribution



2.1. Fuel Stick Data
2.1.4. Calibration and Validation Datasets
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Data distribution
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2.2. FFMC Model
2.2.1. General Structure

The new FFMC model has been developed as modification of the original FFMC model of RISICO system [4], which was 

developed in the 2000s based on the FFMC model of the well-known Canadian Fire Weather Index. 

The FFMC model of RISICO system presents some important differences with respect to FWI:

1. the model incorporates diversification of fuel types in some key parameters: standard response time and 

saturation level;

2. the model is flexible with respect to different time steps, as it is represented by a dynamic equation.

[4] Paolo Fiorucci, Francesco Gaetani, and Riccardo Minciardi. “Development and application of a system for dynamic wildfire risk assessment in Italy”. In: 
Environmental Modelling and Software 23.6 (June 2008), pp. 690–702. issn: 13648152. doi: 10.1016/j.envsoft.2007.05.008.

RISICOFWI
NEW 

MODEL

The model is composed by two different phases: No-Rain Phase and Rain Phase



2.2. FFMC Model
2.2.2. No-Rain Phase

As reported in the literature [5], the fuel moisture content presents an exponential behavior toward an Equilibrium 

Moisture Content (EMC) value, with a response time (K).

● The Equilibrium Moisture Content is widely recognised to be function of temperature and air humidity

● The response time is considered function of fuel characteristics (dimension, type) and weather conditions

[5] Stuart Matthews. “Dead fuel moisture research: 1991-2012”. In: International Journal of Wildland Fire 23.1 (2014), pp. 78–92. issn: 
10498001. doi: 10.1071/WF13005.

Dynamic Equation

FFMC dynamics

initial condition

simulated time [h]



2.2. FFMC Model
2.2.2. No-Rain Phase

FFMC can go through a desorption (or drying) or absorption (or wetting) 
phase depending on whether the initial value is above or below the 
equilibrium value respectively

The EMC value is considered the same for both the phases

T: temperature [°C]
H: humidity [%]

Some parameters have been kept from the original model to avoid large-dimension 

optimization problem. 

The parameter has been identified as having the greatest impact on EMC behaviour in 

the calibration dataset.

A1 TO BE CALIBRATED

A2 0.555

A3 10.6

A4 0.5022

A5 0.0133



2.2. FFMC Model
2.2.2. No-Rain Phase

T: temperature [°C]
H: humidity [%]

A1 0.7063

A2 0.555

A3 10.6

A4 0.5022

A5 0.0133

Results of calibration



2.2. FFMC Model
2.2.2. No-Rain Phase

T0: Standard response time, in 
standard conditions [6]:

It is used to differentiate between 
different fuel types

[6] Nelson, J. (2000). Prediction of diurnal change in 10-h fuel stick moisture content. Canadian Journal of Forest Research, 30(7), 
1071–1087. https://doi.org/10.1139/cjfr-30-7-1071

The response time K is considered function of:
1. weather conditions: it is decreasing with 

temperature and wind speed
2. fuel characteristics, represented by the 

parameter T0

T: temperature [°C]
W: wind speed [m/s]

different coefficients have been calibrated 
for the drying and wetting phases 

B1,drying TO BE CALIBRATED

C1,drying TO BE CALIBRATED

B2,drying TO BE CALIBRATED

B3,drying TO BE CALIBRATED

B1,wetting TO BE CALIBRATED

C1,wetting TO BE CALIBRATED

B2,wetting TO BE CALIBRATED

C2,wetting TO BE CALIBRATED

D drying constrained

D wetting constrained
For the calibration process, T0 has been set to 10 h, 
the standard response time of the fuel stick



2.2. FFMC Model
2.2.2. No-Rain Phase

T: temperature [°C]
W: wind speed [m/s]

B1,drying 3.165

C1,drying 0.091

B2,drying 4.785

C2,drying 0.011

B1,wetting 4.130

C1,wetting 1.108

B2,wetting 5.738

C2,wetting 1.207

D drying 5.267

D wetting 160.436

w
in

d
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Results of calibration



2.2. FFMC Model
2.2.2. No-Rain Phase

W: Water content [g]

F: fuel weight in dry conditions [g]

The FFMC model has been calibrate to simulate the water content over the total weight

Since the well-known equation presented before is referred to the FFMC with respect to the dry weight, the 

equation has been modified accordingly with respect to the transforming relation.



2.2. FFMC Model
2.2.3. Rain Phase

In the rain phase, the fuel moisture increases at each simulated 
step, according to the amount of rain occurred and the distance 
from the saturation value (sat).

The equation is independent from the time step, depending only 
on the amount of rain occurred.

initial condition

r: rain[mm]

Delta FFMC

R1 68.546

R2 53.313

R3 0.936

For the calibration process, saturation has 
been set to 45% (FFMC over all weight), the 
standard saturation value of the fuel stick
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2.3. Parameters Optimization
2.3.1. Objective Function

1. Given the observed value of fuel moisture at time t, the model runs to 
compute the next forecasted fuel moisture value

2. the residuals are computed at each time step, for each time-serie

3. the objective function is composed by the sum of the squared values of 
residuals for each time steps, and each time-serie

For each 
time-series

For each time 
steps

Real value
Simulated value with 
parameters set Ө

Number of 
time-series

Number of 
time steps



2.3. Parameters Optimization
2.3.2. Optimization Algorithm

To minimize the objective function, a Particle Swarm Optimization (PSO) algorithm has been identified

What is it? How does it work?

PSO-type algorithms are metaheuristics that 
try to optimize a problem iteratively 
improving a candidate solution with respect 
to a measure of quality (e.g. the objective 
function)

PROs CONs

1. no assumptions about 
the problem

2. can search very large 
spaces of candidate 
solutions

1. do not guarantee an 
optimal solution is 
found: affected by local 
minima problem

2. difficulties in deal with 
large dimension 
problems

1. The swarm is initialized with different particles. 
A particle is characterized by:
a. the position, that is a set of parameters
b. the velocity

2. The swarm moves into the parameters space, probing 
different positions (e.g combination of parameters)

3. The position and the velocity is update trying to move toward 
the best solution found (swarm intelligence)

4. A randomness is introduced to promote exploration



2.3. Parameters Optimization
2.3.2. Optimization Algorithm

Different modification of the original PSO algorithm have been proposed.

[7] Wang, H., Liang, M., Sun, C., Zhang, G., & Xie, L. (2021). Multiple-strategy learning 
particle swarm optimization for large-scale optimization problems. Complex and 
Intelligent Systems, 7(1), 1–16. https://doi.org/10.1007/s40747-020-00148-1

Multi-strategy 
learning particle 

swarm optimization 
(MSL-PSO) [7]Pseudocode

1. initialize the swarm, with N_POP elements
2. while i<MAX_ITER:

a. for n=1:N_POP:
i. probe N_PROBES positions following the 

social learning paradigm
ii. save the best probed position for the 

element n 
b. a new swarm of best probed positions is 

identified
c. for n=1:N_POP:

i. for each element, identify two different 
sub-swarms for the social learning 
paradigm

d. i = i+1

The particle learns from the other particles that present a 
better fitness (smaller values of the objective function) 
[convergence] and from the barycenter of the swarm 
[exploration]

The particle learns from the other new probed particles 
that present a better fitness [convergence] and from the 
some particles that present worse fitness [exploration]

Two different learning processes to balance between the 
convergence to the global solution and the diversity of 
the population

TO AVOID LOCAL MINIMA, THE ALGORITHM RUNS MANY TIMES 
PER EACH TEST, KEEPING THE BEST SOLUTION.
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2.4 Goodness-Of-Fit
2.4.1. GOF Measures

Goodness-Of-Fit (GOF) measures are introduced to assess the goodness of the fit achieved by the 
parameter optimization procedure.

Bias>0 : overestimation (WETTER VALUES)
Bias<0 : underestimation (DRYER VALUES)
Bias=0 : perfect correspondence between model 
and observation

The Bias measures the mean deviation 
between model and observation

The RMSE is an estimator of the standard 
deviation of the errors

RMSE=0 : perfect correspondence between 
model and observation



2.4 Goodness-of-fit
2.4.1. GOF Measures

Goodness-Of-Fit (GOF) measures are evaluated for each time-series separately, to identify 
specific conditions on which the model does not properly fit observations. 

How to compute the GOF measures?

1. from the first fuel moisture 
observation, the model is run 
independently for all the time steps

2. the model results are used to 
compute the GOF measures

3. a time lag is imposed, to consider a 
transitory behavior of the model. The 
time lag depends on the time-serie 
type:
a. No-rain: 72 hours
b. Rain: 1 hour
c. Mixed: 72 hours
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3. Results

Calibration Validation

No-Rain Rain No-Rain Rain Mixed

Original New Original New Original New Original New Original New

Objective Function 408 389 98 060 28 078 7 114 110 389 27 569 7 963 1 136 1 766 703 471 359

RMSE

min 0.381 0.449 0.106 0.03 0.461 0.587 0.203 0.25 0.397 0.459

max 7.020 3.796 14.263 10.019 6.910 4.041 10.726 5.139 14.501 9.133

median 2.643 1.328 3.164 1.177 3.022 1.358 3.599 1.163 3.966 1.895

BIAS

min -0.884 -3.657 -8.14 -7.620 -0.263 -2.754 -2.664 -5.130 2.584 -8.577

max 6.678 2.811 13.779 9.538 6.618 3.720 10.692 3.874 14.117 5.861

median 2.456 -0.255 2.492 -0.369 2.769 -0.062 3.223 -0.356 3.407 -0.2

In the Table, the results of the objective function and goodness-of-fit metrics are shown for the original model of 
RISICO and for the calibrated one, for all the three calibration datasets: No-Rain, Rain and Mixed.
The calibrated model shows better performance on all validation datasets, with slightly negative bias. This behavior 
can be accepted as precautionary measure to avoid underestimation of wildfire danger conditions.

3.1. Calibration Results



3. Results

How to read the plots?

Each tile represents a 
different time-serie

The color is related to 
the metric value of the 
time-serie

The different clusters 
are highlighted

Worst (in red) and best 
(in blue) time-series are 
selected

3.1. Calibration Results

Information about minimum, 
maximum and median values, for all 
the time-series and for each cluster
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3.1. Calibration Results
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3. Results

Best time-serie
Metric: RMSE

No Rain
Validation Dataset3.1. Calibration Results



3. Results

Worst time-serie
Metric: RMSE

Worst time-serie 
overestimation
Metric: BIAS

No Rain
Validation Dataset3.1. Calibration Results



3. Results

Best time-serie 
Metric: BIAS

No Rain
Validation Dataset3.1. Calibration Results



3. Results

Worst time-serie 
underestimation
Metric: BIAS

No Rain
Validation Dataset3.1. Calibration Results



3. Results Rain
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3.1. Calibration Results



3. Results
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Rain
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3. Results

Best time-serie
Metric: RMSE

Rain
Validation Dataset3.1. Calibration Results



3. Results

Worst time-serie
Metric: RMSE

Worst time-serie 
underestimation
Metric: BIAS

Rain
Validation Dataset3.1. Calibration Results



3. Results

Best time-serie 
Metric: BIAS

Rain
Validation Dataset3.1. Calibration Results



3. Results

Worst time-serie 
overestimation
Metric: BIAS

Rain
Validation Dataset3.1. Calibration Results



3. Results

Worst

Best

Mixed
Validation Dataset

ORIGINAL MODEL

RM
SE

NEW MODEL
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3. Results
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Mixed
Validation Dataset
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3. Results

Best time-serie
Metric: RMSE

Mixed
Validation Dataset3.1. Calibration Results



3. Results

Worst time-serie
Metric: RMSE

Worst time-serie 
underestimation
Metric: BIAS

Mixed
Validation Dataset3.1. Calibration Results



3. Results

Best time-serie 
Metric: BIAS

Mixed
Validation Dataset3.1. Calibration Results



3. Results

Worst time-serie 
overestimation
Metric: BIAS

Mixed
Validation Dataset3.1. Calibration Results



3. Results
3.2. FFMC Model for Wildfire Danger Assessment

To evaluate FFMC model performance on wildfire danger assessment, we computed the FFMC model results for 87783 
wildfires occurred in Italy from 2007 to 2021 (source: Italian Civil Protection Department, wildfire data for research 
purposes).

For each wildfire event, we collected:

[8] Consortium for Small-scale Modeling - COSMO. url: https : //www .cosmo-model.org/  
(accessed: 24.11.2022).

● the vegetation types interested by 
the wildfire event, from CORINE 2018 
Land Cover Map, aggregated in 4 
classes: grasslands, broadleaves, 
shrubs, conifers. ● the 3-hours outputs of COSMO 

Numerical Weather Prediction 
model [8] of all the grid points 
within 7 km from the wildfire 
centroid, for 10 days before the 
event;

Grasslands Broadleaves Shrubs Conifers

T0 12 h 120 h 24 h 48 h

Saturation 40% 60% 40% 50%

Different fuel parameters used for the different 
classes considered



3. Results

The model run in an ensemble approach: each weather output is used for 
each fuel type considered. 
The time step considered is 3 hours, as the weather outputs.

10 days are considered before the 
wildfire event in order to avoid 
transitory behavior.

Then, the FFMC outputs of the day of the fire are 
aggregated in the daily mean 50th percentile.

The same procedure has been done for the 
original FFMC model of RISICO.

The calibrated model shows a better performance 
for very large wildfire, identifying for them lower 
values of FFMC with respect to the original model.

3.2. FFMC Model for Wildfire Danger Assessment



3. Results

To assess the ability of the model to discriminate very large wildfires, we computed the Receiver Operating 
Characteristics (ROC) curve for wildfire larger than 500 ha, where different threshold values of FFMC from 0% to 
60% are used as threshold to classify a large wildfire (with values below this threshold).

The calibrated model shows a better performance 
in discriminate very large wildfire, with an 
increase in the Area Under the Curve (AUC) value.

3.2. FFMC Model for Wildfire Danger Assessment
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