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1. Background
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The estimation of Fine Fuel Moisture Content (FFMC) is a key factor in any Forest Fire Danger Rating
System, to determine ignition-prone fuel conditions and fire behavior. The difficulty in obtain frequent and
spatialized real-time measurements of FFMC leads to the use of models to assess and predict it.

The FFMC model represents the core and dynamic component of RISICO [4], the Forest Fire Danger Rating System
used operatively by the Italian Civil Protection Department and developed in 2000 by CIMA Research Foundation.

In the framework of the new release of RISICO in 2023, the FFMC model has been reformulated and calibrated on
the basis of fuel stick data.

In this presentation:
1. the calibration procedure on fuel stick data is presented, with a description of the new FFMC model;

2. the results of FFMC model performance on past wildfires events in Italy from 2007 to 2021 are presented.
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2.1. Fuel Stick Data C
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2.1.1. Data Collection and Analysis T
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Fuel stick data has been collected from 5 fuel sticks allocated in Israel (see
[1]). Data refers from 2017 to 2021.

We thank the authors of the paper for sharing the data with us.

Latitude Longitude m D|stance[il"(rr(:1|]n the sea

Zefat Mt. 35.5070 32.9800 936 38
Kenaan

351203 31.7803 715 43

Afula Nir 35.2769 32.5960 60 33
Haemeq

Map data ©2015 Google
35.7484 32.9056 405 63
34.9544 31.8308 180 26

[1] Shmuel, A., Ziv, Y., & Heifetz, E. (2022). Machine-Learning-based evaluation of the time-lagged effect of meteorological factors on 10-hour dead fuel moisture
content. Forest Ecology and Management, 505, 119897.
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2.1. Fuel Stick Data

2.1.1. Data Collection and Analysis Sharing is
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: . : Data has been provided at
The 5 fuel sticks have been located next to meteorological stations. ) prov
1 hour time resolution
F;::] Variable of interest:
‘o Fuel Moisture Content
Measuring instrument: . :
Fuel sticks are often used for wildfire
Temperature i . -
[°C] P Campbell [2] Fuel Stick danger forecasting systems, providing
real-time data of fuel moisture.
CS506 Fuel
Moisture Sensor
) Time series of

Wind weather 26601 10-hour Fuel

Speed — conditions Moisture Stick .

[m/s] and fuel 'd

moisture /

Air F." ,/ [2] Fue/l/Stick brochure - (:‘ampl/)ell Scientific

Humidity /‘ https://www.campbellsci.com/pn26601

[%]
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W: Water content [g] o(x) = 10g+x 100

F: fuel weight in dry conditions [g]
The fuel stick measures The original FFMC model of
fuel moisture calculated as N ” RISICO simulates the water
the water content over the |FFMC, =100 FFMC = -7-7100 | content over the total weight
dry fuel weight (FFMC dry). (FFMC).

=
¢ () =5 100

For this reason, the following fuel moisture measures are reported with respect to the total weight, according to the

proper conversion.
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**The continuity index is 1 for a continuous

alternates missing data with valid data

Zefat Mt. 04.2018-07.2021 0.689 0.999 R ——
Kenaan Continuity = 1 — 2 X = :
umber of times
04.2017-07.2021 0.935 0.998
. A time interval is valid if composed by all valid times.
Afula Nir 04.2017-01.2021 0.812 0.999 P y
Haemeq
08.2017-07.2021 0.804 0.999
05.2017-02.2021 0.851 0.998 *The completeness index is 1 if all the data are

present for each time of the timeseries.

Number of valid times
Number of times

Completeness =

These time series cover a wide range of weather
conditions thanks to their continuity and
completeness, and their length of about 4 years.

A time instant is valid if all weather data are present.
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2.1.1. Data Collection and Analysis

Variables distribution
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2.1. Fuel Stick Data

2.1.1. Data Collection and Analysis

e Afula Nir Haemeq

Variables distribution

Rain
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Wind Speed ' ' T ' ' ' '
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T
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2.1.1. Data Collection and Analysis

Variables distribution
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2.1. Fuel Stick Data

2.1.1. Data Collection and Analysis

Variables distribution
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2.1. Fuel Stick Data

2.1.2. Time-serie Sampling

Sub-timeseries have been sampled.
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Three groups of sub-time-series have been selected:

1. No-rain: time-series without rain to calibrate the no-rain phase
2. Rain: time-series with rain have to calibrate the rain phase
3. Mixed: generic time-series to evaluate the final calibrated model

Timeseries length
Presence of rain

Distance from no-data

Minimum temperature

Buffer between timeseries

Number of sampling

UniGe | DIBRIS

No-rain phase

240 h (10 days)

Sampling criteria

Rain phase

6 h

240 h (10 days)

no yes, for all the times not strictly requested
24 h 24 h 24 h
0°C 0°C 0°C
72 h (3 days) 6 h 120 h (5 days)
277 351 408

Sampling method: stochastic

1. data clusters that meet the
selection criteria are identified

2. aclusteris randomly drawn from
possible clusters

3. the time-serie is selected from the
cluster and removed from the
possible choices

4. the procedure is repeated until
possible clusters are available
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2.1. Fuel Stick Data T

No rain | Rain Mixed EG U
2.1.2. Time-serie Sampling e 46 89 6 naring's W

64 58 92

As expected,.the no-rain sam ples are mostly from Afula Nir Haemeg 6 6 o

Summer period, while rain samples are from Spring

and Winter period. 58 79 81
56 64 82

Histogram of months distribution Histogram of months distribution Histogram of months distribution
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2.1. Fuel Stick Data

2.1.3. Time-serie Clustering

For each group of timeseries, clusters are computed.

Cluster 0

AAS

o

AN

AN

Cluster 1

Cluster 2

NS

UniGe | DIBRIS
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Data clustering has been performed to:

1. identify structures on the timeseries
2. select properly the datasets for
calibration and validation

Method: K-means [3]
Metric: Dynamic Time Warping (DTW)
Number of clusters: 3

Variable for clustering: Fuel Moisture

[3] Aghabozorgi, S., Seyed ShirkRhorshidi, A., & Ying Wah, T. (2015). Time-series
clustering - A decade review. Information Systems, 53, 16-38.
https://doi.org/10.1016/).i5.2015.04.007
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CLUSTER: O

Clusters statistics o size: 142

Mean values

Number

of Fuel Air

samples Moisture Humidity Temperature Wind speed

[%] [%] [° C] [mIS] r?]onths w0 Odist;??coe frz(gr?ﬁo ra?r???w]
CLUSTER: 1
142 (51%) 9.98 65.90 24.42 2.59 s, size: 39 o
39 (14%) 10.39 56.38 15.65 3.75 o 30
20
96 (35%) 7.46 51.99 23.26 3.07 Al N
2.5¢]
. . . . . 0.05 5 10 Oi.so. 175 2.00 225 2.5(
CLUSTER 0: the biggest cluster, characterized by time-serie samples in months distance from rain [h]
Summer, with low values of fuel moisture “ize:06
207 40

154 30

CLUSTER 1: the smallest cluster, with time-series in Spring, Autumn or Winter
very close to rains (less than 2 hours from the last registered rain)

10+ 204

o7

o w
i
o o

5 10 0 1000 2000 3000
months distance from rain [h]

CLUSTER 2: especially in Spring and Summer, very low values of fuel moisture
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Temperature‘ Wind speed Fuel Moisture ClUSte rS plOt
40| i el i 12.51
2] 10.01 301
w 30+ el 1T Y TR
E gl 101 | i CLUSTER 0: regular behavior, alternating
5 10 200 5 10 20 %% 10 200 5 100 200 between absorption and desorption of
CU Time [h] Time [h] Time [h] .
moisture
m 40 12.51
ﬂ 304 | 10.04 !
n pud o | g 7y CLUSTER 1: after-rain behavior, with a
© = 5.0 decrease in moisture content
H 10' 2_5_
o 0 100 200 0 100 200 %05 100 200 0 100 200 .
Z Time [h] Time [h] Time [h] Time [h] CLUSTER 2: low values of moisture, not
Tirnr | 125 | particularly regular behavior
10:0- - g |
@ 75/
£ 7
5.01
2.5+
— : : — : 0.04 ! ! : ! ! . .
° Time [h] 200 ° Time [h] 200 ° Time [h] 200 ° Time [h] 200 Timeseries

Centroid of the cluster

UniGe | DIBRIS (only for fuel moisture)




2.1. Fuel Stick Data

2.1.3. Time-serie Clustering

Clusters statistics

EELREITES

Number of | Fyel Air

samples | Mojsture Humidity
[%] [%]

Temperature | Wind speed

)

(WISl 151 (43%
Cluster 2 [RAEXEEY

As expected, all the clusters are referred to timeseries near
rains (or inside rain events), in Spring/Winter period, with high
values of fuel moisture
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Clusters plot
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2.1.3. Time-serie Clustering

(]

Fuel

Air

LB outstanding Student & PhD
encouraged [l cniaeer g Studen
C usters s Tt CLUSTER: 0
ize: 72
l t r tatIStICS y size N
15 s0]
Mean values 1 N
Number 5 .

samples

Moisture

[%]

Humidity

[%]

Temperature

[°c]

Wind speed
[m/s]

(ISl 261 (64%)

Cluster 0 Y
5

(18%) 18.69 0.19 75.23 11.95 3.40
9.22 0.004 60.87 23.0 2.88
16.63 017 72.93 19.95 3.33

CLUSTER 0: characterized by time-serie samples in Spring or Winter, with high
values of fuel moisture

CLUSTER 1: the biggest cluster, with time-series mainly in Summer period, and

with very low values of fuel moisture

CLUSTER 2: similar to cluster 0; characterized by time-serie samples in Spring or
Winter, with high values of fuel moisture
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e The No-rain and Rain groups of samples have been then splitted into a calibration dataset (80%) and validation
dataset (20%), maintaining for each of the two datasets the same distribution of clusters identified in the initial
dataset.

e The mixed group have been all used for validation of the calibrated model.

Calibration
Cluster 0 Cluster 1 Cluster 2
AVAVAN
AAN NN\ A A~S] AN \/\/\/ Number of samples
, Calibration Validation
A A =
/\/\/\ Validation m
A A N SAVAN| | SENSNY/
AN
AN
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2.1.4. Calibration and Validation Datasets
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Data distribution

Dataset: validation
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2.1.4. Calibration and Validation Datasets
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Data distribution
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Data distribution

Dataset: validation
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2.2. FFMC Model

2.2.1. General Structure Sharing is

encouraged

The new FFMC model has been developed as modification of the original FFMC model of RISICO system [4], which was

developed in the 2000s based on the FFMC model of the well-known Canadian Fire Weather Index.

The FFMC model of RISICO system presents some important differences with respect to FWI:

1. the model incorporates diversification of fuel types in some key parameters: standard response time and
saturation level;

2. the model is flexible with respect to different time steps, as it is represented by a dynamic equation.

The model is composed by two different phases: No-Rain Phase and Rain Phase

[4] Paolo Fiorucci, Francesco Gaetani, and Riccardo Minciardi. “Development and application of a system for dynamic wildfire risk assessment in Italy”. In:
Environmental Modelling and Software 23.6 (June 2008), pp. 690-702. issn: 13648152. doi: 10.1016/j.envsoft.2007.05.008.
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2.2. FFMC Model
2.2.2. No-Rain Phase Sharing is
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As reported in the literature [5], the fuel moisture content presents an exponential behavior toward an Equilibrium
Moisture Content (EMC) value, with a response time (K).

e The Equilibrium Moisture Content is widely recognised to be function of temperature and air humidity

e The response time is considered function of fuel characteristics (dimension, type) and weather conditions

50 1 FFMC0=10% K=5h

—— FFMC0=10% K=20h
Dynamic Equation ' _ 457 —— FFMC0=50% K=5h
K (FFMC)' + FFMC = EMC — rruco-son K30
——- EMC
35 -

simulated time [h] 30 -

~—
t

FEMC dynamics FFMC = EMC + (FFMCy, — EMC)e kK
10 A

initial condition 0 20 40 60 80 100
Time [h]

FFMC [%]

25 A

20 A

15 ~

[5] Stuart Matthews. “Dead fuel moisture research: 1991-2012". In: International Journal of Wildland Fire 23.1 (2014), pp. 78-92. issn:

. 10498001. doi: 10.1071/WF13005.
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2.2. FFMC Model Ho)
. L
2.2.2.No-RainPhase  pppM(C = €Ma+ (FFMC, —éMb)e_? SR,
SN’ p

H—-100
EMC(H,T) = A{H* + Age 10 +Ay(3 —min [T,30])(1 —e~#s")  Titemperature

TO BE CALIBRATED Some parameters have been kept from the original model to avoid large-dimension
01'225 optimization problem.
0.5022 The parameter has been identified as having the greatest impact on EMC behaviour in
0.0133 the calibration dataset.

FFMC can go through a desorption (or drying) or absorption (or wetting)
phase depending on whether the initial value is above or below the

equilibrium value respectively

The EMC value is considered the same for both the phases

UniGe | DIBRIS




2.2. FFMC Model

. L
2.2.2.No-Rain Phase  |pppC = €MB+ (FFMC, —éMb)e‘E SR,
SN’ p

H—-100

EMC(H,T) = A;H* + Ase” 10+ A4(3 — min [T, 30])(1 — e~ 4sf) T: temperature [°C]

0.7063

0.555

10.6

0.5022

0.0133

Results of calibration

UniGe | DIBRIS
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H: humidity [%]
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—8*C
20 °C

—30°C
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2.2. FFMC Model
. L
2.2:2.No-RainPhase | pFM(C = EMC + (FFMC, — EMC)e (¥) SRS

D;
— . . T: temperature [°(]
1+ B, ;T i + B, ;W¢ai L= {arying, wetting] W: wind speed [m/s]

Ki(TI W) = TO )

Ghot U  TO BE CALIBRATED The response time K is considered function of:
il | 'O BE CALIBRATED 1. weather conditions: it is decreasing with To: Standard response time, in

YN8  TO BE CALIBRATED standard conditions [6]:
XX a8 TO BE CALIBRATED 5
SRSl TO BE CALIBRATED
RS0 7O BE CALIBRATED
YIS TO BE CALIBRATED
WISl  TO BE CALIBRATED

temperature and wind speed
fuel characteristics, represented by the
parameter TO

T = 27°C Wy =0m/s

It is used to differentiate between
different fuel types

D drying constrained

D; sothat K;(T =Tg4,W =Wy) =1
D wetting constrained } ! i( st st)

For the calibration process, TO has been set to 10 h,
different coefficients have been calibrated the standard response time of the fuel stick

for the drying and wetting phases

) [6] Nelson, J. (2000). Prediction of diurnal change in 10-h fuel stick moisture content. Canadian Journal of Forest Research, 30(7),
UniGe | piBRrIS 1071-1087. https://doi.org/10.1139/cjfr-30-7-1071




2.2. FFMC Model
. L
2.2.2.No-RainPhase | rpMC = EMC 4 (FFMC, — EMC)e (K) B

D;
1+ B, T + B, ,WCai

K(TW)=T," i = {drying, wetting}  T:lemperature[°C]

W: wind speed [m/s]

B1,drying 3.165
C1,drying 0.091 K dry K wet
—5°C
B2,drying 4.785 - 20°C
—30°C
C2,drying 0.011 _ _
- E =
B1,wetting 4130
Cl,wetting 1108 6 \—_
B2,wetting 5.738 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
C2,wetting 1.207 Vo B Windispeed fims] — i
2m/s
D drying 5.267 12 300 — 5 mis
— 10 m/s
D wetting 160.436 10 500
= <
] ] 100
Results of calibration .
e ———
4 ——
10 20 30 40 10 20 30 40
Temperature [°C] Temperature [°C]
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2.2. FFMC Model ©)

(G

2.2.2. No-Rain Phase Sharing is

encouraged

The FFMC model has been calibrate to simulate the water content over the total weight

" W: Water content [g]

W+F 100 F: fuel weight in dry conditions [g]

FFMC =
all

Since the well-known equation presented before is referred to the FFMC with respect to the dry weight, the

equation has been modified accordingly with respect to the transforming relation.

~ EMC® —100Ge™ &7
1 — Ge %@

z(t) = EMC® + (x¢ — EMC’d)e_ﬁ y(t)

@(x) = 55100 G- EMC* — yg

UniGe | DIBRIS




2.2. FFMC Model

2.2.3. Rain Phase
R,

Sharing is
encouraged

R3

FFMC = FFMCy+ Ry "1 e SAl-FFMCo+1. (1 —¢T) ¢ vainfmm]

J

v ‘
4
initial condition Delta FFMC
In the rain phase, the fuel moisture increases at each simulated

step, according to the amount of rain occurred and the distance
from the saturation value (sat).

The equation is independent from the time step, depending only
on the amount of rain occurred.

68.546
53.313
0.936

For the calibration process, saturation has
been set to 45% (FFMC over all weight), the
standard saturation value of the fuel stick

UniGe | DIBRIS

(%]

45 Delta FFMC

— 0.5 mm
1mm
~——5mm
—— 10 mm
35 — 15 mm

40

30

—1%
10 %

—20%

20 —30%

25

15

10

) 20 40 60 80 100

Rain [mm] lmO(
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FFMC [%]

2.3. Parameters Optimization H©)

2.3.1. Objective Function

Sharing is
encouraged

A
20 + | | | = real value
I | | 3 ——— model
T }

10 - 2 N (- residual

I Number of

| | | time steps

O : | | Number of Simulated value with
t1 t2 t3 Time > time- series J Real value Parameters set ©
N /i
Given the observed value of fuel moisture at time t, the model runs to ¢9 2
compute the next forecasted fuel moisture value (}’] (tk) y] (tkr ))
. . : . J=1k=1
the residuals are computed at each time step, for each time-serie f *
For each time

the objective function is composed by the sum of the squared values of For each steps
residuals for each time steps, and each time-serie time-series

UniGe | DIBRIS

.
RESEARCH
FOUNDATION



2.3. Parameters Optimization

2.3.2. Optimization Algorithm

Sharing is
encouraged

To minimize the objective function, a Particle Swarm Optimization (PSO) algorithm has been identified

What is it?

PSO-type algorithms are metaheuristics that
try to optimize a problem iteratively
improving a candidate solution with respect
to a measure of quality (e.g. the objective

function)

PROs

no assumptions about
the problem

can search very large
spaces of candidate
solutions

UniGe | DIBRIS

CONs

do not guarantee an
optimal solution is
found: affected by local
minima problem
difficulties in deal with
large dimension
problems

How does it work?

1.

The swarm is initialized with different particles.
A particle is characterized by:

a. the position, that is a set of parameters

b. the velocity

The swarm moves into the parameters space, probing
different positions (e.g combination of parameters)

The position and the velocity is update trying to move toward
the best solution found (swarm intelligence)

A randomness is introduced to promote exploration




2.3. Parameters Optimization

. Sharing is
Multi-strategy encouraged

learning particle
swarm optimization

2.3.2. Optimization Algorithm

Different modification of the original PSO algorithm have been proposed.

Pseudocode (MSL-PSO) [7]
1. initialize the swarm, with N_POP elements
2. while i<MAX_ITER: Two different learning processes to balance between the
a. for n=1:N_POP: convergence to the global solution and the diversity of
I. probe N_PROBES positions following the the population
social learning paradigm

iil. save the best probed position for the \

b element nf b bed . . The particle learns from the other particles that present a
: ?dre‘?]‘é‘;ﬁsé"éarm of best probed positions is better fitness (smaller values of the objective function)

[convergence] and from the barycenter of the swarm

c. for n=1:N_POP: [exploration]

I. for each element, identify two different

sub-swarms for the social learning —_
paradigm The particle learns from the other new probed particles

d. Q=i+ that present a better fitness [convergence] and from the
some particles that present worse fitness [exploration]

TO AVOID LOCAL MINIMA, THE ALGORITHM RUNS MANY TIMES
PER EACH TEST, KEEPING THE BEST SOLUTION.

[7]1 wang, H., Liang, M., Sun, C., Zhang, G., & Xie, L. (2021). Multiple-strategy learning

particle swarm optimization for large-scale optimization problems. Complex and
UniGe | piBRIS Intelligent Systems, 7(1), 1-16. https://doi.org/10.1007/s40747-020-00148-1
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2.4 Goodness-Of-Fit
2.4.1. GOF Measures Sharing is

encouraged

Goodness-Of-Fit (GOF) measures are introduced to assess the goodness of the fit achieved by the
parameter optimization procedure.

The Bias measures the mean deviation
between model and observation

T
1 . -

Bias = —Z (t;,,0) — 9:(t or j=1,..,N Bias>0 : overestimation (WETTER VALUES)
T (e, 0) = 3;(ti))  for J Bias<0 : underestimation (DRYER VALUES)

k=1

Bias=0 : perfect correspondence between model
and observation

The RMSE is an estimator of the standard
RMSE = \/%Z£=1(yj(tk) —yi(tx,0))?  for j=1,..,N deviation of the errors

RMSE=0 : perfect correspondence between
model and observation

UniGe | DIBRIS




2.4 Goodness-of-fit
2.4.1. GOF Measures

Goodness-Of-Fit (GOF) measures are evaluated for each time-series separately, to identify
specific conditions on which the model does not properly fit observations.

How to compute the GOF measures?

1.

from the first fuel moisture
observation, the model is run
independently for all the time steps

the model results are used to
compute the GOF measures

a time lag is imposed, to consider a
transitory behavior of the model. The
time lag depends on the time-serie
type:

a. No-rain: 72 hours

b. Rain:1 hour

c. Mixed: 72 hours

UniGe | DIBRIS
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— real value

—— model

time lag GOF measures >
Time
GOF
good
M -J\/_,\_/ medium
N\AT bad
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3. Results

3.1. Calibration Results

In the Table, the results of the objective function and goodness-of-fit metrics are shown for the original model of

RISICO and for the calibrated one, for all the three calibration datasets: No-Rain, Rain and Mixed.

The calibrated model shows better performance on all validation datasets, with slightly negative bias. This behavior

can be accepted as precautionary measure to avoid underestimation of wildfire danger conditions.

Objective Function

No-Rain

Original

408 389

Calibration

Rain

New Original

No-Rain

Original

110 389

New

Validation

CE

Original

Mixed

Original

1766 703

Sharing is
encouraged

471 359

min

max

median

min

max

median

0.381 0.461 0.587 0.203 0.25 0.397 0.459
7.020 6.910 4.041 10.726 5139 14.501 9133
2.643 3.022 1.358 3.599 1163 3.966 1.895
-0.884 -0.263 -2.754 -2.664 -5.130 2.584 -8.577
6.678 6.618 3.720 10.692 3.874 14117 5.861
2.456 2.769 -0.062 3.223 -0.356 3.407 -0.2

UniGe | DIBRIS




3. Results

3.1. Calibration Results Sharing is

encouraged

How to read the plots?

Metric: RMSE Information about minimum,
median:3.022 min:0.461 max:6.910 1 1
Cluster 0 - median:2.461 min:0.461 max:6.910 / maX|.mum an.d medlan values, for all
Cluster 1 - median:3.260 min:0.686 max:4.134 the time-series and for each cluster

Cluster 2 - median:3.858 min:1.264 max:6.843

The different clusters
are highlighted

LUSTER1

(o))

_ Each tile represents a
different time-serie

CLUSTER O/C

IS

The color is related to
the metric value of the
time-serie

Worst (in red) and best
(in blue) time-series are
selected

CLUSTER?2

UniGe | DIBRIS




3. Results
3.1. Calibration Results

CLUSTER1

RMSE

CLUSTER O

CLUSTER?2

UniGe | DIBRIS

Validation Dataset

No Rain

Metric: RMSE
median:3.022 min:0.461 max:6.910
Cluster 0 - median:2.461 min:0.461 max:6.910
Cluster 1 - median:3.260 min:0.686 max:4.134
Cluster 2 - median:3.858 min:1.264 max:6.843

[ee]

~

o)}

w

H

ORIGINAL

Metric: RMSE
median:1.358 min:0.587

max:4.041

Cluster 0 - median:1.248 min:0.673 max:3.084
Cluster 1 - median:1.188 min:0.587 max:2.397
Cluster 2 - median:1.607 min:0.686 max:4.041

CLUSTER1

CLUSTER O

CLUSTER2

[
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NEW




3. Results
3.1. Calibration Results

CLUSTER1

BIAS

CLUSTER O

CLUSTER2

UniGe | DIBRIS

Validation Dataset

No Rain

Metric: BIAS
median:2.769 min:-0.263 max:6.618
Cluster 0 - median:2.268 min:-0.104 max:6.618
Cluster 1 - median:3.136 min:-0.263 max:4.073
Cluster 2 - median:3.649 min:0.436 max:6.540

IIIIIIIIIIIIIIIIIIIIIIIIW . IIIIIIIIIIIIIIIII 6

ORIGINAL

Metric: BIAS
median:-0.062 min:-2.754 max:3.720
Cluster 0 - median:-0.619 min:-2.754 max:2.708
Cluster 1 - median:0.371 min:-2.109 max:1.641
Cluster 2 - median:0.917 min:-1.637 max:3.720

—

o

T

—

(%)

2

; - i

o

o

L

-

()
23

) j

-0

N

o

LU

=

(%)

)

—l

O

NEW
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3. Results No Rain

3.1. Calibration Results Validation Dataset Sharing i
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encouraged candidate Presentation contest

Timeserie: 52
month: 4 last rain: 2h cluster: 1
RMSE: 0.587 BIAS: 0.319

I 2 20 B0 EEEE00 0 ESSSal|0]0 0 EBESSaal||]0909090 B0 BSSSaaa|090 SEaaal090o o Saaamamaan

Fuel Moisture

model

model-original

EMC

EMC-original

response time
response time-original
Relative humidity
Temperature

Wind speed

N / da
i v / “/‘ ¥

PO a / night
. = drying phase

wetting phase
rain phase

Best time-serie
Metric: RMSE

\
\
’
|
1

0 T T T
[ L] L | L | L] L | L] L] T LB
10 A
w
" NaWTias
0 T

. 0 50 100 150 200
UniGe | DIBRIS time [h]




3. Results
3.1. Calibration Results

No Rain
Validation Dataset

Timeserie: 6

month: 3 last rain: 2h cluster: 2
RMSE: 4.041 BIAS: 3.72
40 7 — — — — I =] p— —

Worst time-serie
Metric: RMSE

Worst time-serie
overestimation
Metric: BIAS

20 A

[°C]

101

UniGe | DIBRIS

time [h]
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Fuel Moisture
model
model-original
EMC
EMC-original
response time
response time-original
Relative humidity
Temperature
Wind speed

day

night

drying phase
wetting phase
rain phase




3. Results

3.1. Calibration Results

Best time-serie
Metric: BIAS

UniGe | DIBRIS

No Rain
Validation Dataset

month: 7

Timeserie: 29
last rain: 2h  cluster: 0
RMSE: 0.954 BIAS: -0.058

30 4

20+

[°C]

10 1

50

100 150
time [h]

200

Outstanding Student & PhD
candidate Presentation contest

Fuel Moisture
model
model-original
EMC

EMC-original
response time
response time-original
Relative humidity
Temperature
Wind speed

day

night

drying phase
wetting phase
rain phase




3. Results No Rain

3.1. Calibration Results Validation Dataset |

candidate Presentation contest

Timeserie: 45
month: 6 last rain: 1444h cluster: 0
RMSE: 2.786 BIAS: -2.754

Fuel Moisture

o . del
WorSt tlme-SerIe _ de:I-original
underestimation £ e
EMC-original

Metric: BIAS

response time
response time-original
Relative humidity
Temperature

Wind speed

day

night

drying phase

wetting phase

rain phase

th]

80
60 -

%]

— 40

zﬁAﬁmﬂnﬂﬂﬁmﬁAAmAMAmh ,
VY VNSV VWV W VY AT

0 T T T
. 0 50 100 150 200
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3. Results
3.1. Calibration Results

Rain

Validation Dataset

Metric: RMSE
median:3.599 min:0.203 max:10.726
Cluster 0 - median:5.200 min:0.769 max:10.726
Cluster 1 - median:5.326 min:1.547 max:9.101
Cluster 2 - median:1.397 min:0.203 max:3.729

CLUSTER?2

RMSE

CLUSTER O

CLUSTER1

UniGe | DIBRIS

14

12

ORIGINAL

Metric: RMSE
median:1.163 min:0.250 max:5.139
Cluster 0 - median:1.880 min:0.491 max:4.946
Cluster 1 - median:1.084 min:0.250 max:4.375
Cluster 2 - median:0.664 min:0.273 max:5.139

CLUSTER?2

[]

CLUSTER 0

CLUSTER1

NEW
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12

10




3. Results

3.1. Calibration Results

Rain

Validation Dataset

Metric: BIAS
median:3.223 min:-2.664 max:10.692
Cluster 0 - median:4.730 min:-2.664 max:10.692
Cluster 1 - median:4.996 min:-2.177 max:9.080
Cluster 2 - median:0.509 min:-2.402 max:3.706

BIAS

15

N
4
L
[
(Y2
o)
—
@) 10
o
m -
L
U‘) == e
D - — 5
-
@)

- _ 0
—
%
L
(Y2
= —

ORIGINAL
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Metric: BIAS
median:-0.356 min:-5.130 max:3.874
Cluster 0 - median:-0.277 min:-3.999 max:3.874
Cluster 1 - median:0.232 min:-4.139 max:2.137
Cluster 2 - median:-0.495 min:-5.130 max:0.632

CLUSTER2

CLUSTER O

CLUSTER1

NEW
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3. Results Rain

3.1. Calibration Results Validation Dataset sharingis W

encouraged

Best time-serie
Metric: RMSE .
Timeserie: 5
month: 12 last rain: 1h cluster: 1
RMSE: 0.25 BIAS: -0.104

- Fuel Moisture

40 | model
— - model-original
X = Rain
— 20 1
day
mmm night
0 I , I drying phase
= wetting phase
6 . ! { rain phase
=
= 4
E
2 -
0 T T T
0 1 2 3 4 5

time [h]
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3. Results :
Rain
3.1. Calibration Results Validation Dataset sharingis [l ——
encou raged ndidate Pregse;tdeir\;;s;::tzs(
Worst time-serie
Metric: RMSE
Worst time-serie .
. . ie: 57
undgrestlmatlon month: 1 Ilz::;tesrgir:\e: 1h cluster: 2
Metric: BIAS RMSE: 5.139 BIAS: -5.13

Fuel Moisture
model
model-original
Rain

day

mm night

I I I drying phase
wetting phase
rain phase

40 A

[%]

20 A

(o) N}

[mm/h]
D

N
!

time [h]
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3. Results Rain

3.1. Calibration Results Validation Dataset

Best time-serie
Metric: BIAS

Timeserie: 45
month: 4 last rain: 1h cluster: 0
RMSE: 0.496 BIAS: 0.031

Sharing is
encouraged

[%]

5.0 4

[mm/h]

2:57

0.0

time [h]
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3. Results
3.1. Calibration Results

Worst time-serie
overestimation
Metric: BIAS

Rain
Validation Dataset

Timeserie: 46
month: 10 last rain: 1h cluster: 0
RMSE: 3.888 BIAS: 3.874
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time [h]
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Rain

day

night
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wetting phase
rain phase




RMSE

Mixed
3.1. Calibration Results Validation Dataset
Metric: RMSE Metric: RMSE
median:3.996 min:0.397 max:14.501 median:1.895 min:0.459 max:9.113
Cluster 0 - median:7.026 min:1.384 max:11.540 Cluster 0 - median:2.866 min:0.933 max:9.113
Cluster 1 - median:2.825 min:0.397 max:9.208 Cluster 1 - median:1.441 min:0.459 max:4.530
o Cluster 2 - median:6.051 min:2.362 max:14.501 o Cluster 2 - median:2.927 min:1.167 max:6.761
o o
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3. Results

3.1. Calibration Results

Metric: BIAS

Mixed

Validation Dataset

median:3.407 min:-2.584 max:14.117

Cluster 0 - median:6.182 min:-0.438 max

:10.966

Cluster 1 - median:2.592 min:-0.846 max:8.806

BIAS

o Cluster 2 - median:5.177 min:-2.584 max
o
= m m [
0 T | m =
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o
I D

ORIGINAL
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:14.117

F

15

10

Cluster 0 - median:-0.300 min:-8.557 max:3.068
Cluster 1 - median:-0.140 min:-3.587 max:4.215
Cluster 2 - median:-0.487 min:-5.954 max:5.861

Metric: BIAS
median:-0.200 min:-8.557 max:5.861

L. --

CLUSTER2 CLUSTER O

CLUSTER1

NEW
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3. Results

3.1. Calibration Results

Best time-serie
Metric: RMSE

UniGe | DIBRIS

[%]

[mm/h]

Mixed
Validation Dataset

Timeserie: 133
month: 5 last rain: 150h cluster: 1
RMSE: 0.459 BIAS: -0.275

50

100 150
time [h]

200

Fuel Moisture
model
model-original
EMC

EMC-original
response time
response time-original
Relative humidity
Temperature
Wind speed

Rain

day

night

drying phase
wetting phase
rain phase
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3. Results
3.1. Calibration Results

Mixed
Validation Dataset

Timeserie: 384
month: 2 last rain: 163h cluster: 0
RMSE: 9.113 BIAS: -8.557

Worst time-serie
Metric: RMSE

[%]

Worst time-serie 0

underestimation a0
Metric: BIAS =2 1A .
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100 150 200
time [h]

Fuel Moisture
model
model-original
EMC

EMC-original
response time
response time-original
Relative humidity
Temperature
Wind speed

Rain

day

night
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wetting phase
rain phase
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3. Results
3.1. Calibration Results

Mixed
Validation Dataset

month: 11

Timeserie: 261

last rain: 34h

cluster: 2

RMSE: 2.177 BIAS: 0.012
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3. Results Mived

3.1. Calibration Results Validation Dataset Sharing i
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Timeserie: 320
month: 1 lastrain: 4h cluster: 2
RMSE: 6.376 BIAS: 5.861
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3. Results

3.2. FFMC Model for Wildfire Danger Assessment
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To evaluate FFMC model performance on wildfire danger assessment, we computed the FFMC model results for 87783
wildfires occurred in Italy from 2007 to 2021 (source: Italian Civil Protection Department, wildfire data for research

purposes).

For each wildfire event, we collected:

Vegetation Weather
@

the 3-h tputs of COSMO *7‘/\/
o € 5>-nours outputs o ;

Numerical Weather Prediction

|

—\

model [8] of all the grid points
within 7 km from the wildfire

|

centroid, for 10 days before the E
event; ./ _)

[8] Consortium for Small-scale Modeling - COSMO. url: https : //www .cosmo-model.org/
(accessed: 24.11.2022).
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e the vegetation types interested by
the wildfire event, from CORINE 2018
Land Cover Map, aggregated in 4
classes: grasslands, broadleaves,
shrubs, conifers.

Grasslands | Broadleaves | Shrubs Conifers

wh | omon | omn |
Saurion [ TR

Different fuel parameters used for the different
classes considered




3. Results

3.2. FFMC Model for Wildfire Danger Assessment Sharings
The model run in an ensemble approach: each weather output is used for 10 days are considered before the
each fuel type considered. =) \vildfire event in order to avoid
The time step considered is 3 hours, as the weather outputs. transitory behavior.

60
Then, the FFMC outputs of the day of the fire are :

B Original model
@ Calibrated model

aggregated in the daily mean 50th percentile.

8)
o

The same procedure has been done for the
original FFMC model of RISICO.

I
o

FFEMC [%]
S

20 s

The calibrated model shows a better performance ‘
for very large wildfire, identifying for them lower i ol _L vl _L =
values of FFMC with respect to the original model. o I L e £

A<10ha 10ha<A<100ha 100ha<A<1000ha A>1000ha
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3. Results
3.2. FFMC Model for Wildfire Danger Assessment T
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To assess the ability of the model to discriminate very large wildfires, we computed the Receiver Operating
Characteristics (ROC) curve for wildfire larger than 500 ha, where different threshold values of FFMC from 0% to
60% are used as threshold to classify a large wildfire (with values below this threshold).

Area threshold: 500 ha

1
The calibrated model shows a better performance
in discriminate very large wildfire, with an
increase in the Area Under the Curve (AUC) value.

o
o

&
o

0.4

o
N

= - Original model - AUC:0.738
- Calibrated model - AUC:0.766

True Positive Rate (TPR)

0 0.2 0.4 0.6 0.8 1

False Positive Rate (FPR)
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