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An overlooked key quantity of the ocean

Vertical velocities (w) drive the distribution of essential ocean properties but retrieving them is a challenge to be yet accomplished.
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Vertical integral from surface
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Vertical integral from surface

e Validation NEMO OGCM LVB-W
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Time-mean w output from OGCIV

1994-2015 mean OGCM w output
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Time-mean w estimate (LVB-W) from OGCM v,

LVB vertical integral from e OGO LVEY
surface: Y
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LVB-W(z") = wgi — [, r

The upwelling and
dowelling regions are well
reconstructed.
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Time-mean w estimate (LVB-W) from OGCM v,

The upwelling and
dowelling regions are well
reconstructed.

Time-mean OGCM w/ OGCM LVB-W relative

Acceptable mean relative error (10-50%)

Poor mean relative error (>50%)

Most of vertical circulation in _ ‘
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w estimate (LVB-W) from OGCM v, K
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w estimate (LVB-W) from OGCM v,
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Time-mean w estimate (LVB-W) from observations

Time-mean obs. LVB-W

ARMOR3D 1

obs. LVB-W(z') = wiit® — f;dz

obs. LVB-W
with similar large scale
structures and amplitude
as OGCM simulation
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ARMOR3D: Mulet et al.,2012
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Comparison of obs-based LVB-W with other datasets
Analysis of the time-mean vertical structure of the North Atlantic gyres
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Analysis of the time-mean vertical structure of the North Atlantic gyres

STG downwelling

TG upwelling
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obs. LVB-W vertical structure consistent with:
* OGCM output and OGCM LVB-W
* Ocean reanalysis (ECCO)

(Omega Equation derived w)
represents a barotropic ocean

obs. LVB-W reproduces the baroclinicity
of the OGCM w unlike

ECCO: Forget et al., 2015
Buongiorno Nardelli et al., 2018; 2020
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Comparison of interannual obs-based LVB-W with other datasets

Analysis of the time variability of the North Atlantic gyres
Corr. with LVB-W
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Comparison of interannual obs-based LVB-W with other datasets

Analysis of the time variability of the North Atlantic gyres
Corr. with LVB-W
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Upload Communities

pr 25,2023

Global vertical velocity estimates from
observation-based geostrophic meridional
velocities

Cortés Maorales, Diego; Lazar, Alban

Annual vertical velocity (w) estimates from observation-based geostrophic velocities within the global themacline during
the 1994-2018 period.

The w fields are computed following the methodology described in Cortés-Morales and Lazar, submitted applied to the
ARMOR3D [Mulet et al,, 2013] geostrophic meridional velocities. The boundary condition used is the Ekman pumping
vertical velocities computed from ERAS wind stress.

https://zenodo.org/record/7857246#.ZEeVynZBxaQ

Two thermocline w(x,y,z,t) estimates
derived from observations for the
community
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Where we are now?

Mean obs. LVBW
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Large scale
horizontal
structure

Mean obs. LVBW

= 338 -

NOT SHOWN HERE

> WHY?

2.5
1
1 1
1l 1
25 \“‘ I|
\
9
25.5 (2]
o o L] :E‘ g
Baroclinicity 3 : ;
S 26 E
26.5
M3 0 5 6 F 20
[107] m/s
STG downwelling
2
. =
iability | - v X
E XA
L) ege s /;\\ \
variability | s WX
12 1595 7600 v'mu 01 701
ars

J

CONCLUSIONS AND PERSPECTIVES




Thank you for your attention



Comparison of interannual obs-based LVBW with previous datasets
Analysis of the horizontal distribution of the circulation

Mean obs. LVBW
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