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Unsupervised Flood Detection on SAR Time Series
Ritu Yadav, Andrea Nascetti, Hossein Azizpour, Yifang Ban, Member, IEEE,

Abstract—Human civilization has an increasingly powerful
influence on the earth system. Affected by climate change and
land-use change, natural disasters such as flooding have been
increasing in recent years. Earth observations are an invaluable
source for assessing and mitigating negative impacts. Detecting
changes from Earth observation data is one way to monitor the
possible impact. Effective and reliable Change Detection (CD)
methods can help in identifying the risk of disaster events at
an early stage. In this work, we propose a novel unsupervised
CD method on time series Synthetic Aperture Radar (SAR)
data. Our proposed method is a probabilistic model trained with
unsupervised learning techniques, reconstruction, and contrastive
learning. The change map is generated with the help of the
distribution difference between pre-incident and post-incident
data. Our proposed CD model is evaluated for flood detection
task. We verified the efficacy of our model on 8 different
flood sites, including three recent flood events from Copernicus
Emergency Management Services and six from the Sen1Floods11
dataset. Our proposed model achieved an average of 64.53%
Intersection Over Union(IoU) value and 75.43% F1 score. Our
achieved IoU score is approximately 6-27% and F1 score is
approximately 7-22% better than the compared unsupervised
and supervised existing CD methods. Based on our CD method,
we also proposed an automatic change point detection framework
where time series data is processed through the model to identify
percentage change and the date on which significant change
started to reflect on SAR data. This can help in early detection
of floods giving more time for response. Our proposed model
and change point detection framework are lightweight and easy
to deploy. We conducted a range of experiments and ablation on
our model. The results and extensive discussion presented in the
study show the effectiveness of the proposed unsupervised CD
method.

Index Terms—SAR, Change Detection, Time Series, VAE,
LSTM, Contrastive Learning, Flood Detection.

I. INTRODUCTION

ACCORDING to a report from the Centre for Research on
the Epidemiology of Disasters (CRED) [1], In 2021, a

total of 432 catastrophic events were recorded, which is con-
siderably higher than the average of 357 annual catastrophic
events for 2001-2020. Floods dominated these events, with
223 occurrences, up from an average of 163 annual flood
occurrences recorded across the 2001-2020 period. Countries
such as India, China, Afghanistan, and Germany faced the loss
of thousands of lives and billions of dollars [1]. Current flood
predictions and evacuation services are gradually improving
and are not fully reliable to handle the situation before a
flood. In most flooding events, rescue services are launched
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afterward. In such a scenario, accurate and reliable flood maps
reflecting the damaged areas can help in efficient emergency
response. The maps can be used for rescue missions, re-
routing traffic, delivering aid, and many more. In the case of
large-scale floods, on-ground evaluation for the identification
of affected areas can be risky due to unfavorable weather
conditions and collapsed transportation systems. Whereas,
satellites can help in quick access to ground information over
a large geographical area. The data can be used in detecting
and mapping flooded areas and their severity. Satellites are a
leading technology in gathering quick information on a large
scale. A rapid increase in remote sensing technology leads to
an immense amount of earth observation sensors providing
data at different spectral, spatial, and temporal resolutions.
Compared to optical data, Synthetic Aperture Radar (SAR)
imagery is preferred for flood mapping [2]. Unlike optical
sensors, SAR has the capability of imaging day and night,
irrespective of the weather conditions.

Water surface can be detected using SAR because the water
surface is smooth and SAR backscatter from a smooth surface
is very low [3]. As a result, the water surface appears in a
darker tone whereas the land surface with rough soil texture,
building, vegetation, and others appears in bright tones. During
floods, land surfaces are partially covered with water causing
a significant change in backscatter. Therefore, floods can be
detected with a CD framework that is proficient in detecting
these backscatter changes.

II. RELATED WORK

In recent years, deep learning in Earth observation has
received significant attention. Before deep learning there were
classical unsupervised CD methods such as ImageDiff which is
simply the difference between bi-temporal images, ImageRatio
[4] uses the ratio of two bands, ImageRegr [5], CVA [6] which
is a conceptual extension of image differencing. Several super-
pixels and spatial neighborhood-based variants of CVA have
been proposed, such as parcel change vector analysis (PCVA)
[7] and robust change vector analysis (RCVA) [8]. DPCA [9],
and PCDA [10] are examples of principal component analysis
used for land cover CD.

Although there exist several classical methods to detect
changes in multi-temporal images, deep learning gained new
achievements due to its powerful discriminative ability [11].
FC-EF [12] and FC-Siam-diff [13], [12] are fully connected
siamese network variations developed for CD. DS-IFN [14]
proposed a fusion network for bitemporal CD on high-
resolution optical images. There are multiple works on at-
tentive siamese networks, DASNet [15] proposed a change
map using L2 distance between the attentive feature maps
from a dual siamese encoder, ADS-Net [16] proposed a
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multiscale siamese encoder followed by an attentive decoder
and DAUSAR [17] proposed a dual stream attentive U-Net
architecture to detect changes. DASNet and ADS-Net operate
on optical imagery whereas DAUSAR detects changes in SAR
imagery. There are few works of CD with a generative network
such as BIT [18] proposed a tokenized transformer network
embedded with a deep difference-based CD framework. BIT
detects changes in bitemporal high-resolution optical imagery.
Deep learning CD methods in remote sensing are predomi-
nantly supervised. The above-mentioned methods are some of
well-known supervised deep learning methods for CD.

Deep neural networks harness their great feature learning
power from a large amount of labeled data. Unfortunately,
in earth observation labeling data is a time taking task and
requires domain expertise. The challenge is further elevated
by the low-resolution data causing difficulty in feature dis-
crimination for data labeling. Due to these challenges, there
are not many large-scale datasets in earth observation. Apart
from urban/building monitoring and land cover classification
other earth observation task such as flooding, landslide, and
wildfire suffers severely due to lack of labeled data. Training
supervised networks on small datasets raises questions about
their generalizability to other sites. In fact, many studies in
earth observation are being conducted on a single site [19],
[20], [21]. On the other hand, we have a large amount of
unlabeled earth observation data which is readily available for
use. An unsupervised CD method can be trained on these unla-
beled data and can give more generalized results in comparison
to supervised methods trained on small labeled datasets [22],
[23], [24]. More recently, unsupervised deep learning methods
are proposed for CD on remote sensing data such as [25]
where a denoising autoencoder (DAE) is proposed and [26]
proposed a highly coupled convolutional network for detecting
changes between SAR and optical images. These unsupervised
methods are tested on scenes with limited spatial complexity
and didn’t explore time series data. One of the recent work
[24] trained simple variational autoencoder on reconstruction
task and used distance metric on latent parameters to get low
resolution change maps. This network is trained on time series
data and designed to detect changes between two Sentinel-2
multispectral images.

In past few years, unsupervised learning techniques like
SimCLR [27], MoCo [28], BYOL [29] and DeepCluster [30]
has shown tremendous success. SimCLR and MoCo proposed
contrastive learning from ’positive pairs’(augmented version of
the same image) and ’negative pairs’ (augmented version of
a different image). These methods need careful treatment for
negative pairs by relying on large batches or memory banks.
The need for negative pairs was eliminated by BYOL, relying
on learning from positive pairs. DeepCluster is a clustering
method that jointly learns the parameters of a neural network
and cluster assignments of the resulting features. [31] used
deepcluster method and implemented unsupervised clustering
with CNN to learn clustering-friendly feature representations
of SAR data. There are multiple CD works on heterogeneous
remote sensing data such as [32] used both deep cluster
and contrastive learning to train a multisensor siamese CD
network. Another recent work is Code Aligned Autoencoder

(CAA) [33] where an encoder-decoder network learns features
from cross modality with the help of contrastive learning.
The network generate output which merge features from the
two modalities and looks like somewhere in-between the
two modalities. The change map is produced by calculating
difference image between the pre change input and generated
output followed by manual thresholding. One of the recent
work RaVAEN [24] trained a simple variational autoencoder
on reconstruction task and used distance metric on latent pa-
rameters to obtain low-resolution change maps. This network
is trained on time series data and designed to detect changes
between two Sentinel-2 multispectral images.

Inspired by unsupervised deep learning techniques, we tar-
geted our challenging problem of CD in a fully self-supervised
manner. In this study, we introduce a generative network for
CD on Sentinel-1 SAR data. We named our CD method as
Contrastive ConvLSTM Variational Autoencoder (CLVAE).
Our method utilizes unlabeled time series data to train our
network without external supervision at any stage. The key
contributions of our work are as follows.

1) We propose a novel self-supervised CD method that
gains its ability predominantly from the strong latent
representations learned by the probabilistic reconstruc-
tion architecture of the variational autoencoder. We ac-
knowledge the ability of time series data in CD task and
to accommodate the benefits we embrace our proposed
network with convolutional long short-term memory.

2) We show how the learned latent parameters of a recon-
struction network can be employed to generate change
maps. See subsection IV-F and framework 4. We further
empowered our reconstruction network with cross con-
nections between encoder and decoder branches similar
to U-net.

3) We present network trained in a fully self-supervised
manner. Along with reconstruction loss, the network
is trained using contrastive learning where layers can
learn to reconstruct SAR input so well that they can
differentiate between dissimilar patches. We followed
the contrastive learning idea from MoCo and simplified
it for our remote sensing CD task. See training pipeline
3 and subsection IV-E for explanation.

4) Our training network is lightweight with 577,239 total
parameters. The inference network is even smaller as it
only uses the encoder part of the trained network. Both
training and inference networks are memory efficient,
making it easier for testing and deployment.

5) We display adaptability of unsupervised learning on
sparse spatiotemporal SAR satellite data that are sub-
stantially different from the natural images commonly
used in computer vision.

Additionally, we propose a change point detection frame-
work (see Figure 5). Change point detection aims to locate
abrupt property changes in time series data [33]. We can
use the framework for continuous change monitoring, event
detection and temporal anomaly detection such as detecting
the point when the change started [34]. A significant change
is an indicator of a major activity and might require human
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Fig. 1. Overview of the Study Sites. Colored dots represents tile locations and numbers are the references given to each tile. Red dots represents Sen1Floods11
sites and green dots represents CEMS sites.

attention.

III. DATA AND STUDY AREA

Our proposed unsupervised CD method was validated
on Sentinel-1 SAR data. Two sources Sen1Floods11 [35]
and Copernicus Emergency Management Service (CEMS)[36]
were utilised to prepare the data. Collectively, our method was
validated on data from 9 flood sites. The location and details
of these flood events are presented in Figure 1 and Table I.
The data collection process from both sources is explained in
Subsection III-A followed by the data pre-processing steps in
Subsection III-B

TABLE I
FLOOD EVENT METADATA. ’TILE REF.’ IS THE REFERENCE NUMBER

GIVEN TO EACH TILE, SITE IS THE NAME OF THE FLOOD SITE, ’S1 POST
DATE’ IS THE DATE OF THE SENTINEL-1 POST-IMAGE, ’GT DATE’ IS THE
DATE OF THE SATELLITE IMAGE WHICH IS USED TO CREATE THE GROUND

TRUTH, ’REL. ORBIT’ IS THE RELATIVE ORBIT NUMBER OF THE
SENTINEL-1 POST IMAGE AND ’ORBIT’ IS ASCENDING(ASC) OR

DESCENDING(DES) ORBIT INFORMATION OF THE SENTINEL-1 IMAGE.

Tile Ref. Site S1 Post Date GT Date Rel. Orbit Orbit
Sen1Floods11

1 Sri-Lanka 2017-05-30 2017-05-30 19 Des
2 Slovakia 2020-10-20 2020-10-20 73 Asc
3 Somalia 2020-05-07 2020-05-07 116 Asc
4 Spain 2019-09-17 2019-09-17 110 Des

5,6 Bolivia 2018-02-15 2018-02-15 156 Des
7,8 Mekong 2018-08-05 2018-08-05 26 Asc

CEMS
9,10 Bosnia 2022-04-06 2022-04-03 51 Des

11,12,13 Australia 2022-03-31 2022-03-31 147 Des
14,15 Scotland 2022-11-18 2022-11-18 30 Asc

A. Data Collection
Sen1Floods11 Dataset consist of Sentinel-1 data from 11

different flood events covering a wide variety of geographical

area. In total, there are 446 non-overlapped Sentinel-1 tiles in
the dataset and each tile is of 512x512 pixel size with a 20-
meter ground resolution. Each data sample is composed of two
bands VV (vertical transmit, vertical receive) and VH (vertical
transmit, horizontal receive). The dataset also provides pixel-
wise classification ground truth (flood segmentation maps).
The dataset is hand labeled by experts by using information
from Sentinel-1 and Sentinel-2 data followed by manual
validation. Each pixel in the ground truth is classified into
three categories, 0, 1, and -1. Class 0 represents the absence
of water, class 1 represents water, and -1 indicates missing
data. Since the ground truth was prepared using both Sentinel-
1 and Sentinel-2, heavy clouds in the Sentinel-2 data affected
the ground truth preparation. Wherever there is a cloudy pixel
in the Sentinel-2, the corresponding pixel in ground truth is
marked as missing data i.e., -1. Even though the dataset is big
in terms of number of sites covered and number of tiles, a
large part of the covered area has no(missing) corresponding
ground truth. Therefore, this dataset is not sufficient and we
still need a bigger dataset to efficiently train a deep network in
a supervised setting. As of now, to the best of our knowledge
Sen1Floods11 dataset is the biggest global dataset available
on Sentinel-1, hence we decided to use some of good sites for
evaluating our unsupervised CD method. To detect, evaluate
and visualize flood on each pixel of the region, we choose
reliable sites from the test data where there is no missing data
in the ground truth. With this criteria, we ended up with tiles
from six sites Bolivia, Spain, Cambodia, Slovakia, Somalia,
and Sri Lanka.

In Sentinel-1 data samples in the Sen1Floods11 dataset were
acquired after floods and are sufficient for a segmentation
task. While the CD task requires samples from both pre
and post-flood events. Therefore, we also collected pre-flood
images and the data collection process is as follows. First,
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we extracted geometry, relative orbit, and the passing orbit of
post-flood images; Second, we downloaded Sentinel-1 images
in two months window before the flood event date using
geometry and orbit criteria. For each flood event, four pre-
flood images (pre-images) were selected. Further data speci-
fications for each site are provided in Table I. All Sentinel-1
data was collected from Google Earth Engine (GEE) [37].
Before downloading, data were pre-processed as described in
subsection III-B.

Copernicus Emergency Management Service (CEMS) is
one of the six worldwide services provided by the Copernicus
program. It provides early warning, monitoring platforms, and
mapping services for different natural and man-made disasters.
CEMS helps countries with prevention, preparation, response,
and recovery activities. We evaluated our proposed method
on three recent flood events listed on the CEMS website
under ”List of EMS Rapid Mapping Activations”[38]. These
floods occurred in current year (2022) in Mostar, Bosnia
[39], Coraki, Australia [40] and Aberdeen, Scotland [41].
The CEMS provides the official flood maps and is publicly
available on the CEMS website. According to the information
given on the CEMS website, the flood maps for the mentioned
flood events were derived from pre and post-event satellite
images using a semi-automatic approach. The Bosnia flood
map was generated using pre-image from Sentinel-2B and
a postimage from the RADARSAT2 satellite. The Australia
flood map was generated using pre-image from ESRI imagery
and post-image from COSMO-SkyMed satellite. The Scotland
flood map was generated using pre-image from ESRI imagery
and post-image from Sentinel-1 satellite. The acquisition date
of post image which is used in preparing the reference label
is mentioned in Table I under column ’GT Date’.

In this study, the reference labels for the three flood event
were collected from the CEMS website. These are the official
flood maps and publicly accessible. We downloaded and pre-
processed Sentinel-1 data for both pre and post-flood events.
Multiple tiles were selected for each flood event covering
urban, and surrounding agricultural areas. The tile size was
kept as 512x512 pixels to maintain consistency with the
Sen1Floods11 data. We selected four pre-images for each post-
flood tile. Similar to Sen1Floods11 Dataset, all Sentinel-1 data
are preprocessed, downloaded from GEE. For further details
on collected Sentinel-1 data see Table I.

B. Data Preprocessing

All collected data were preprocessed and subsequently ex-
ported from the cloud-based platform GEE. It is becoming one
of the most popular platforms for geospatial big data analysis.
One of the biggest advantages of GEE is that Sentinel-1 SAR
data is directly available as analysis-ready data cubes. Several
studies have highlighted the potential of GEE platform to
analyse large amount of geospatial data in a timely manner
(e.g.[42], [43], [44], [45], [46]).

The Sentinel-1 mission collects C-band SAR images at 20
m resolution with dual polarization (HH+HV and VV+VH).
Sentinel-1 images in GEE were preprocessed to Ground
Range Detected (GRD) images using the Sentinel-1 Toolbox.

Preprocessing includes removal of thermal noise, radiometric
calibration, and terrain correction. In addition, backscatter
coefficients were converted to decibels using log scaling
(10 log10 x). We fetched dual-band VV+VH scene acquired
in Interferometric Wide swath (IW) mode in a given period,
orbit and location. While collecting scenes we also filtered
them by Ascending and Descending passes due to the strong
influence of incidence angle in the backscatter coefficient. We
made sure that orbit pass and relative orbit of all pre and post-
flood images are in agreement. Scenes were carefully selected,
ensuring better data quality. Then we mask backscatter noise
by clipping VV and VH channels in the range (-23, 0) dB and
(-28, -5) dB respectively. Finally, both channels are normalized
in the range [0, 1].

IV. METHODOLOGY

A. Autoencoder

In supervised settings, a neural network uses labels to
learn features of input data. Labels guide the network to
learn specific features depending on the target task, such as
classification, segmentation, CD, and others. Input features
can also be learned in an unsupervised manner and to do so,
autoencoders are one of the widely used network categories.
Autoencoders are pixel-wise reconstruction networks, which
try to reconstruct their input x from a learned representation
z. Unlike supervised CNNs, autoencoders generally learn
input features for the reconstruction task and can be used
for anomaly detection as a downstream task. The architecture
of an autoencoder composed of an encoder e(.) [z = e(x)],
which tries to capture input features x and encodes them into
a smaller feature representation z; a decoder d(.) [x̂ = d(z)],
which decodes the representation z to reconstruct the input x.
The network is trained with a loss derived by comparing the
input x and the reconstructed output x̂.

For our proposed CD network we used a probabilistic au-
toencoder known as variational autoencoder (V AE)[47]. It is
a type of generative model that, unlike standard autoencoders,
uses probabilistic encoding and decoding and learns to output
a distribution over the latent representation ẑ ∼ P (z|x) and
the reconstruction x̂ ∼ P (x|z). Both encoder and decoder
networks in a V AE learn to output the parameters of the learnt
distributions, P (z|x) and P (x|z) (e.g., mean and variance in
case of a normality assumption). Thus, a trained VAE can be
used for both latent representation of an observed input (using
the probabilistic encoder) and for generating new unseen data
(using the probabilistic decoder). In this work, we propose to
detect the changes using the latent representation of a VAE,
since it concisely summarizes the content of an input. In
particular, we used a divergence measure between the latent
distributions (or parameters thereof) of two corresponding
image patches to determine whether there is a substantial
change from one patch to the other.

B. Convolutional LSTM

Long Short-Term Memory (LSTM) is a commonly used
method to learn temporal features of a time series data. LSTM
however operates on 1xN dimensional vector and does not
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Fig. 2. Overview of the proposed Network Architecture for unsupervised CD. The network is trained on small 16x16x3 patches to learn the distribution of
the small region at a time.

explore spatial feature learning. For CD tasks on time series
data, both spatial and temporal characteristics are significant.
Therefore we embedded our proposed network with Convo-
lutional LSTM (ConvLSTM) [48], an LSTM which captures
spatiotemporal correlation. ConvLSTM replaced all 1-d matrix
multiplications by convolutional operation thus taking care of
spatial neighboring features [49].

C. Proposed Network Architecture

Our training network is shown in Figure 2. The architecture
is composed of an encoder, intermediate layers, and a decoder.
The encoder consists of a convolutional LSTM layer, two
residual blocks, a GlobalAveragePooling3D layer, and a dense
layer. The convolutional LSTM layer takes a time series of
input patches and extracts both temporal and spatial features.
Each residual block has three sets of 3D convolutional layer
and batch normalization layer. All convolutional layers used
kernel of size 3 and stride 2. Non-linearity is added using
the relu activation function. The residual block is followed by
a GlobalAveragePooling3D layer, which calculates the spatial
average value for each channel and reduces the dimensionality
effectively. At last, a bottleneck dense layer of 8 channels
is added. The output of the dense layer goes through two
intermediate layers which are dense layers of a size equivalent
to latent space. We fixed the size of the latent space to
128. These two dense layers output mean (µx) and log-
variance (σx) values of the latent distribution corresponding
to an input x. The output µ and σ of the dense layers are
1D vectors, which are then used to sample a latent vector
z ∼ N (µx, σx) with the help of reparameterization trick [47],
[50] for the forward pass to remain differentiable w.r.t. to µ
and σ.

The decoder takes sampled z as input and passes through a
dense layer. These features are then fed into three sets of trans-
pose convolution and batch normalization layers. For transpose
convolution Conv3DTranspose layer is implemented. First
Conv3DTranspose layer is implemented with kernel size 3
and stride 2. Second Conv3DTranspose layer with 3 filters of
kernel size 3x3, stride 3, and ′same′ padding is employed to
reconstruct the input stack of patches. In our implementation,
we follow the common setup of outputting and using only
the mean from the decoder (assuming a fixed unit variance).
Furthermore, the decoder network’s capacity is improved by
employing cross-connections from the encoder network. Note
that such skip layers deviate from the standard VAE by
having the reconstruction conditioned not only on the latent
representation but also on intermediate representations of the
encoder. We found this change to be helpful.

The architecture of our proposed method is lightweight
since we are using a limited number of time-series images
to train the network. Another reason is that Sentinel-1 SAR
data is low resolution in comparison to computer vision images
and sparse spatial features can be easily learned by a shallow
network.

D. Training Pipleline

An overview of the network training pipeline is shown in
Figure 3. In the training pipeline, two proposed networks are
placed in parallel forming two streams. The inputs to the
two streams are time series patches P1 and P2. The input
patches were selected randomly to ensure that they refer to
different locations. Both streams were trained to reconstruct
their corresponding inputs. Since the two inputs were from
different locations, the two networks were also trained to
increase the distance between the reconstructed outputs.
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Fig. 3. The overview of our unsupervised training pipeline. The training pipeline is to train the model on reconstruction task. Figure Best viewed in color.

E. Training Objective Function

The network is optimized using three unsupervised loss
functions: a reconstruction loss [47](LRecon), a Kullback-
Leibler (KL) divergence loss [47](LKL), and a contrastive
loss [51](LContrast). Note that the first two loss functions
constitute the standard VAE objective.

The reconstruction loss encourages the latent representation
to contain adequate input information for an accurate recon-
struction. The KL divergence loss pushes the latent distribu-
tion to be decorrelated and closer to a standard Gaussian.

The contrastive loss ensures diversity in the reconstructions
of the two independent patches P1 and P2. The patches are
from different locations capturing different areas and therefore
should most frequently contain dissimilar features. Such a
contrastive loss enables the network to learn latent repre-
sentations that can differentiate features of separate patches.
Moreover, it can learn uniformly distributed noise, resulting in
a denoising architecture [52]. In this work we are proposing
an architecture for change detection on SAR data. It is well
known that SAR data contains peculiar speckle noise and
removing such noise is one of the major challenge in remote
sensing. Therefore, adding denoising ability to the architecture
is of high importance. The combined objective of the training
network is given in the below equation.

LTotal

= α ∗ [LKL(µP1, σP1, N(0, 1))

+ LKL(µP2, σP2, N(0, 1))]
+ β ∗ [LRecon(P1, P̂1) + LRecon(P2, P̂2)]
+ (1− α− β) ∗ LContrast(P̂1, P̂2)

(1)

where LKL is the KL divergence loss, LRecon is the recon-
struction loss. Parameters α, β are the weight parameter for
prioritizing losses.

F. Inference

Importantly, the proposed network is trained only on pre-
event time series data. This means it has adapted its parameters
to the distribution of features of pre-event data. Based on this,
we assume that the distribution of latent variables for a patch
P1 should undergo a significant change when affected by an
extreme event. This assumption leads us to adopt a simple
mechanism to detect change.

The proposed mechanism for CD is shown in Figure 4
and algorithm 1. The inference pipeline used two encoders
e1(.) and e2(.) from the trained network. Since the encoders
are trained on time series data of length four, we need to
provide data of same length while taking the inference. The
pre-event input data is prepared by stacking four sequential
pre-images(time series), whereas post-event data is formed by
stacking one post image four times. This is because Sentinel-
1 provides one image every 6 days and flood extension
change(increase or decrease) every day. So we use the latest
possible image (stacked four times) to get best estimate of the
flood extension rather than using four post flood image where
the area might not be flooded anymore. Both pre and post-
event data is now divided into small patches of size 16x16x3
with stride 1.

From the trained network, the learned distribution can be
retrieved as 1D vectors of mean µ and log-variance for
latent representations. The varianceσ is obtained by taking the
exponent of log-variance. We pass pre-event patches through
the encoder e1(.) and obtain µ1 , σ1. Similarly, we pass the
post-event patches through encoder e2(.) and retrieve µ2 and
σ2. We can use a number of different measures of divergence
or difference between the two distributions of N (µ1, σ1),
and N (µ2, σ2) to calculate the change. A few distribution
difference measures are tested and compared (see experiment
section VI-A). We opt for using a Cosine difference (CosD)
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Fig. 4. The overview of our inference pipeline. The inference pipeline is for generating change maps between two time stamps. Figure Best viewed in color.

between the µ1 and µ2, defined as follows

CosD(µ1, µ2) = −
µ1

||µ1||
.
µ2

||µ2||
(2)

Unlike training, input patches in the two encoders are from
the same location. Input patches are generated with stride
one and processed with a batch of size 512. The patch-wise
distribution difference is calculated using CosD, resulting in a
change map ( see COSINE DIFF MAP in algorithm 1). Since,
the output distribution difference is one value for each 16x16
size patch, the size of change map is smaller in comparison to
width and height (W, H) of the input image. We tackled this
problem by padding the input pre and post-event images. We
used reflect padding or mirroring with length 8 which means
reflect padding by 8 pixels on all four sides. This problem
could also be resolved by zero padding, but zero padding
introduced boundary errors to the detection results [53]. At
last, a threshold of -0.9 is applied to get the binary change
map (see BIN CMAP in algorithm 1).

G. Change Point Detection

Change over an area can occur slowly over time such as
slow flooding or it can be a sudden event. In case of slow
changes, we should identify when the change starts becoming
significant. The change can be verified on ground. If valid,
the area can then be monitored with priority for further event
prediction and warnings. With this motive, we developed
a change point detection framework where we identify the
point(i.e date) when the change is first started appearing on
the available SAR data. Change point detection is performed
over a long time series and the change is detected compared to
a reference image xref . Any pre-image from the training data
can be selected as a reference image and the corresponding
acquisition date is the reference date t1ref . The reference
image xref is the input to the first encoder e1(.). For the
time series data, we select a time window by providing the
start date and length of the time window. The length of the

Algorithm 1: Binary Change Map Inference.
Input: Time series pre flood images of length

4(PRE IMAGES), post flood
image(POST IMAGE),
PATCH SIZE=nx16x16x3, PAD SIZE= 8,
MODEL

Output: Binary change map BIN CMAP.
1 Pad PRE IMAGES and POST IMAGE using reflect

mode and PAD SIZE.
2 PRE EVENT DATA = stack all PRE IMAGES .
3 POST EVENT DATA = stack POST IMAGE four

times.
4 PRE PATCH = patches from PRE EVENT DATA of

patchsize and stride 1.
5 POST PATCH = patches from POST EVENT DATA

of patchsize and stride 1.
6 for PRE PATCH and POST PATCH do
7 PRE MEAN, PRE STD =

MODEL.encoder1.predict(PRE PATCH)
POST MEAN, POST STD =
MODEL.encoder2.predict(POST PATCH)
Calculate Cosine difference between PRE MEAN
and POST MEAN.

8 From patch-wise cosine difference get the change map
COSINE DIFF MAP.

9 Apply threshold of -0.9 to get binary change map
BIN CMAP= COSINE DIFF MAP>-0.9

time series can be adjusted as per the requirement, for the
demonstration we selected the length as 4 and the time series
is referred as tx...tx+4. All images from the calculated time
window are fetched and processed one by one through encoder
e2(.). Change maps are generated for each image from the
time window. This is done by following algorithm 1, where
inputs are the xref and image from the time window (one at
a time following the sequence). As our proposed network is
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Fig. 5. Framework for the time-series Change Point Detection. It takes a selected pre-image as reference xref and generates change maps for all the images
in a selected time window and then finds the change point in the time window.

currently set to 4 timestamps, both the inputs are stacked four
times before feeding into encoder e1(.) and e2(.).

After getting the change maps, a pixel-based percentage
change is calculated for each map. The change is considered
significant if the percentage change is above a set threshold
value. When the threshold is crossed for the first time, the
framework fetches the acquisition date of the corresponding
input image. The retrieved date is named as change point,
i.e. the date when the change started appearing on the SAR
data and probably the actual starting point of the change.
The threshold can be different according to the sensitivity
of the targeted change and can be adjusted by changing the
parameter. In this study we set the threshold value as median
of percentage changes. The overview of the proposed change
point detection is depicted in Figure 5.

H. Implementation Details

One encoder of our proposed network takes four SAR time
series images and each SAR here contains three channels. The
first 2 channels are VV and VH, whereas the third channel is
empty. We are using the three channel network because of two
reasons. First, with three channels we can use imagenet pre-
trained weights and second, the proposed network architecture
can be reused for detecting changes on optical or RGB images.

Our model was trained on a pre-images to learn the dis-
tribution of the area and before feeding the images to the
training model, input images were split into small patches of
size 16x16x3. We employed data augmentation technique to
introduce more variations in the data which in turn increase
the robustness of the model. This technique is widely used in
classification, segmentation, change detection, and other tasks.

We utilized four types of augmentation for our dataset:
gaussian blur, gammaContrast, flips and rotation. Enhancing
the training dataset with these basic operations improves the
performance of CNNs in remote sensing scene classification

compared to training on the original dataset [54]. Gaussian
blur is a non-geometric augmentation that is applied to our
input data with a kernel size of 3x3. We use gammaContrast
with range (0.25, 2.0) to adjust the image contrast. Both
flips and rotation are geometric augmentation methods. Flips
were applied left-right with a probability of 0.5 and up-down
flips were applied with a probability of 0.2. Rotation was
implemented randomly between -90 and 90 degrees. On each
input sample, a random combination of Gaussian blur, flips,
and rotation was applied before feeding them to the model.

The weight parameter of the objective function α is set to
0.1 which is the weight for KL divergence loss term to bring
latent distribution closer to standard normal distribution. β is
set to 0.7 and given higher weight to reconstruction loss term
for accurate reconstruction learning. The remaining 0.2 weight
is assigned to contrastive loss term. For better convergence, the
model was trained with a decaying learning rate. The initial
learning rate is 0.001 and decayed until it was at 0.00001. The
decay steps were controlled with the ”reduce on plateau”
method, which decays the rate when the learning curve is
stuck at a plateau. The learning rate decay after 2 steps of
no learning (no change in loss) and the training terminates
after four steps of no learning. The training network is shallow
and lightweight. It contains total 576,395 trainable parameters,
therefore the network is faster to train. The network was
trained for 10 epochs. All the experiments were implemented
in Keras and the training was conducted on one Google Colab
GPU. The Code will be released as free and open source and
publicly available on our GitHub account soon.

I. Evaluation metric

The output of the inference network is a pixel-level binary
change map. So, the results are evaluated using pixel-level
metrics. We used four accuracy metrics namely precision (P)
and recall (R), F1 score and IoU. The formulas of the
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metrics are given in Equation 3 – 6, where TP represents true
positives, FP represents false positives, and FN represents false
negatives.

Precision (P) =
TP

TP + FP
(3)

Recall (R) =
TP

TP + FN
(4)

F1 score =
TP

TP + 1
2 (FP + FN)

(5)

IoU =
TP

TP + FP + FN
(6)

F1 score metric is the harmonic mean of precision(P) and
recall(R) where P and R are given by 3 and 4 respectively.
The IoU metric measures the intersection over union where
TP is the intersection term and union term is (TP + FP + FN).
Both F1 score and IoU range from 0 to 1.

V. RESULTS

A. Compared Methods

To demonstrate the benefits of our proposed unsupervised
CD method (CLVAE), we compared it with log-ratio and
Change Vector Analysis (CVA) [6] which are two well-known
methods for CD on SAR images. We also show comparison
with a recent VAE based unsupervised CD method RaVAEn
[24]. It is important to note that our method is unsupervised
and should be compared with only unsupervised methods. But
a good part (6 out of 9 sites) of our tested sites comes from the
Sen1Floods11 dataset test set. Therefore, we choose to com-
pare our results with the results produced by the benchmark
method on the Sen1Floods11 dataset i.e., the published work
with highest IoU score on Sen1Floods11 dataset. To the best
of our knowledge DAUSAR [17] network has provided the
highest score on the Sen1Floods11 dataset, therefore in our
work we will refer to this work as the benchmark method. We
also compared with a recent deeply supervised network ADS-
Net. We want to emphasize that the motive of the comparison
is not only to find the best performing method, but also to
study generalizability of our proposed novel unsupervised CD
network. Below is an overview of the compared methods.

1) Log-ratio is commonly used to highlight changes in pairs
of bi-temporal SAR images (e.g., [55]), and is formally
defined as follows:

LR = 10 log10

(
Stn

St1

)
= 10 log10(Stn)− 10 log10(St1)

(7)
where St1 and Stn are the SAR images acquired over the
same geographical area at the beginning and end of the
time series, respectively. However, prior to computing
the log-ratio, we used the Lee filter to suppress speckle
noise from both images [56]. Binary change maps from
log-ratio were generated using both otsu[57] and Yen’s
thresholding methods [58].

2) CVA is a popular CD method for multispectral optical
images and SAR images. CVA generates change mag-
nitude and change direction separately, which can be
useful in determining change areas and change types.
In this work, we focus on the magnitude of the change.
Therefore, we calculated the magnitude change using
CVA and then the changes are binarized using otsu
thresholding.

3) RaVAEn is an unsupervised method recently proposed to
detect changes in Sentinel-2 multispectral images instead
of SAR. For comparison, we adapted RaVAEn on SAR
data. This method uses a simple VAE network with
residual encoder trained using default VAE losses. The
method uses 32x32 size patches and change on each
patch is calculated using cosine difference. Generated
changes maps contain pixelated changes (see Figures 8
and 9) that result in low-resolution change maps.

4) DAUSAR is a supervised benchmark network [17] on
Sen1Floods11 SAR dataset. It is a deep convolutional
network for pixel-wise detailed CD between pre and
post event images. Since the original Sen1Floods11
contains only post flood images, the authors extended
the dataset by adding pre flood Sentinel-1 images. The
pre-flood images were collected from GEE. The network
is dual-stream Siamese U-Net enhanced with spatial and
channel-wise attention.

5) ADS-Net is a supervised change detection network. It
is a deep convolutional network which uses multi-scale
features to extract changes between bitemporal remote
sensing images. ADS-Net proved better change detection
compared to existing deeply supervised networks in-
cluding the famous FC-Siamese networks among others.
This Network is proposed for 3 channel RGB optical
images. We implemented the network for SAR images,
where we used VV, VH, and VV/VH as three channels.
We trained the network on pre-flood and post-flood
images.

All mentioned methods are implemented fro scratch. The
two supervised network DAUSAR and ADS-Net are trained
on the training set of Sen1Floods11 dataset and corresponding
Sentinel-1 pre flood images from GEE. We use these trained
network to take inference on our test sites listed in Table I.
The inference results will further be used to see how well
a supervised method trained on Sen1Floods11 dataset can
generalize to new flood sites from CEMS website.

B. Quantitative Results

The quantitative comparison of the above-mentioned meth-
ods with our CLVAE is presented in Table II and III. The first
table shows the comparison with all unsupervised methods and
the second table with supervised methods. The comparison
is displayed on each site in terms of four accuracy metrics;
Recall, Precision, F1 score, and IoU. The log-ratio method
with otsu thresholding is performing significantly low in
comparison to the log-ratio with Yen’s thresholding. Hence
in Table II we presented the results from the best performing
threshold method. However, the comparison of log-ratio with
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TABLE II
QUANTITATIVE COMPARISON WITH UNSUPERVISED METHODS: COMPARISON OF OUR CLAVE METHOD WITH UNSUPERVISED METHODS

LOG-RATIO(YEN), CVA AND RAVAEN. THE COMPARISON IS PRESENTED IN TERMS OF PERCENTAGE RECALL(R), PRECISION(P), F1 SCORE(F1), IOU
METRIC. THE PRESENTED METRIC VALUES WERE AVERAGED OVER 3 RUNS.

Log-Ratio(Yen’s) CVA RaVAEn CLVAE(Ours)
Site R P F1 IoU R P F1 IoU R P F1 IoU R P F1 IoU

Sri-Lanka (1) 31.4 11.0 16.3 8.9 57.8 5.3 9.7 5.1 55.65 3.57 6.71 3.47 25.0 8.5 12.7 6.8
Slovakia (2) 60.1 72.9 65.9 49.1 77.0 84.4 80.5 67.4 76.53 50.31 60.71 43.59 77.9 93.8 85.1 74.1
Somalia (3) 65.3 71.9 68.4 52.0 64.2 70.4 67.2 50.6 71.36 55.67 62.55 45.51 82.9 72.1 77.1 62.7

Spain (4) 57.4 60.4 58.9 41.7 56.4 70.4 62.6 45.6 34.97 41.91 38.13 23.55 73.8 74.7 74.2 59.0
Bolivia (5) 57.7 96.0 72.1 56.4 75.5 95.7 84.4 73.0 94.10 78.46 85.57 74.78 92.8 91.9 92.3 85.8
Bolivia (6) 34.2 92.6 50.0 33.3 63.7 60.1 61.8 44.8 65.44 78.60 71.42 55.54 81.9 81.8 81.8 69.3
Mekong (7) 59.8 93.4 72.9 57.4 76.8 99.7 86.8 76.6 67.07 91.00 77.22 62.90 89.5 96.2 92.7 86.4
Mekong (8) 41.7 94.9 57.9 40.8 78.3 99.6 87.7 78.0 72.06 86.80 78.75 64.95 94.9 95.8 95.3 91.1
Bosnia (9) 67.7 23.6 35.0 21.3 60.6 11.0 18.6 10.2 33.00 26.53 29.41 17.24 50.0 51.3 50.6 33.9

Bosnia (10) 58.5 54.1 56.2 39.1 57.7 65.7 61.4 44.3 76.61 52.06 61.99 44.92 70.5 81.1 75.4 60.5
Australia (11) 53.2 69.4 60.2 43.1 75.6 90.8 82.5 70.2 86.85 76.98 81.62 68.94 93.8 91.2 92.5 86.0
Australia (12) 55.7 58.5 57.1 39.9 75.1 83.2 78.9 65.2 82.75 64.44 72.46 56.81 88.9 86.2 87.5 77.8
Australia (13) 47.1 71.8 56.9 39.7 79.7 93.7 86.1 75.6 75.06 83.47 79.04 65.35 96.4 92.2 94.3 89.2
Scotland (14) 67.47 18.37 28.88 16.87 63.9 13.25 21.95 12.33 28.38 50.57 36.36 22.22 71.68 50.95 59.56 42.41
Scotland (15) 71.65 24.19 36.17 22.08 60.43 9.68 16.69 9.1 18.32 56.68 27.69 16.07 65.34 55.8 60.19 43.05

Average 55.26 60.87 52.86 37.44 68.18 63.53 60.46 48.54 62.54 59.80 57.98 44.39 77.01 74.90 75.43 64.53

TABLE III
QUANTITATIVE COMPARISON WITH SUPERVISED METHODS: COMPARISON OF OUR CLAVE METHOD WITH SUPERVISED CHANGE DETECTION METHODS
ADS-NET AND DAUSAR. THE COMPARISON IS PRESENTED IN TERMS OF PERCENTAGE RECALL(R), PRECISION(P), F1 SCORE(F1), IOU METRIC. THE

PRESENTED METRIC VALUES WERE AVERAGED OVER 3 RUNS.

ADS-Net DAUSAR CLVAE(Ours)

Site R P F1 IoU R P F1 IoU R P F1 IoU
Sri-Lanka (1) 13.7 30.9 18.98 10.5 43.8 12.7 19.69 10.9 25.0 8.5 12.7 6.8
Slovakia (2) 94.3 80.2 86.68 76.5 97.7 69.7 81.4 68.6 77.9 93.8 85.1 74.1
Somalia (3) 64.4 84.6 73.13 57.6 99 58.6 73.6 58.3 82.9 72.1 77.1 62.7

Spain (4) 50.5 90.2 64.75 47.8 90.4 55.7 68.9 52.6 73.8 74.7 74.2 59.0
Bolivia (5) 73.7 84.8 78.86 65.1 92.8 78.5 85.1 73.9 92.8 91.9 92.3 85.8
Bolivia (6) 47.1 82.7 60.02 42.9 63.5 77.2 69.7 53.5 81.9 81.8 81.8 69.3
Mekong (7) 93.3 95.9 94.58 89.7 96.2 93.4 94.8 90 89.5 96.2 92.7 86.4
Mekong (8) 92.9 97.3 95.05 90.6 97.1 95.1 96.1 92.5 94.9 95.8 95.3 91.1
Bosnia (9) 23.2 75.8 35.53 21.6 98.2 15.8 27.2 15.7 50.0 51.3 50.6 33.9
Bosnia (10) 59.2 81.4 68.55 52.1 89.6 46.9 61.6 44.4 70.5 81.1 75.4 60.5

Australia (11) 99.7 76.3 86.4 76.1 96.8 84.5 90.23 82.2 93.8 91.2 92.5 86.0
Australia (12) 99 61.5 75.9 61.2 93.2 75.6 83.48 71.6 88.9 86.2 87.5 77.8
Australia (13) 99.8 79.6 88.6 79.5 97.9 87.4 92.35 85.8 96.4 92.2 94.3 89.2
Scotland (14) 38.7 45.4 41.78 26.4 81.9 35.1 49.14 32.6 71.68 50.95 59.56 42.41
Scotland (15) 15.9 68.2 25.79 14.8 61.8 31.7 41.9 26.5 65.34 55.8 60.19 43.05

Avergae 64.36 75.65 66.31 54.16 86.66 61.19 69.01 57.27 77.01 74.90 75.43 64.53

otsu thresholding is depicted later in Figures 8 and 9 for
qualitative analysis.

On average, CLVAE achieved an F1 score of 75.43% and
IoU score of 64.53% with 77.01% recall and 74.90% precision.
Among all the compared methods ours achieved the best
average precision, F1 score and IoU, whereas recall is best
achieved by the DAUSAR. In comparison to the unsupervised
CD methods log-ratio, CVA and RaVAEn, CLVAE outper-
formed in all four average metrics. The lead in recall ranges
from 9-22%, in precision from 11-15%, in F1 score from
15-22% and in IoU from 16-27%. RaVAEn was originally
proposed for CD on multi spectral data and seems to be not
promising for SAR data. This method performed better then
log-ratio but couldn’t outperform other compared methods.
The supervised method DAUSAR has a high recall percent-
age(86.66%) which is approximately 10% higher compared
to CLAVE’s recall. Also, ADS-Net 75.65% precision which

is 0.7% better then CLAVE’s precision. But overall CLVAE
maintains high precision and recall and outperformed the
supervised methods by 6% in F1 and 7% in IoU score.

On individual sites, CLVAE yielded the best F1 score and
IoU except for ’Slovakia’, ’Mekong’ and ’Sri-Lanka’ sites.
On ’Slovakia’ site DAS-Net gave the best results and it’s
DAUSAR on ’Mekong’ site. Compared to CLVAE scores, the
difference is not much and ranges from 1-2% in F1 score and
1-4% in IoU metric. On ’Sri-Lanka’ site, DAUSAR gave the
best results but the scores are extremely low. The site is a rice
field that was flooded right after harvesting months. Therefore
the half-cut stems are good enough to hold flood water and
change is reflected between pre, post images. However, these
flooded fields were not considered flooded in the ground truth
leading to disagreement between the detected change and the
ground truth. This explains the low scores by CLVAE and all
compared methods.
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Fig. 6. Boxplot Graph: Graphical IoU comparison of CLVAE with log-ratio
with Yen’s thresholding, CVA, RaVAEn, DAUSAR and ADS-Net change
detection methods.

Fig. 7. Spider Graph: Graphical IoU comparison of our method with log-
ratio with Yen’s thresholding, CVA, RaVAEn, DAUSAR and ADS-Net change
detection methods.

On most of the sites recall is best achieved by the supervised
method DAUSAR. Since high recall of DAUSAR is associated
with a low precision, the IoU and F1-scores are also relatively
low. Another minor deviation from the average metric results
is in precision on ’Bolivia’ and ’Mekong’ sites. Unlike average
results, the precision on ’Bolivia’ sites is best by log-ratio and
on ’Mekong’ sites by CVA. But they also have low recall
which leads them to significantly low IoU and F1 scores.

Further insights into the results are provided by Figure 6 and
7 where the IoU results are visualized in boxplot and spider
graphs. In the boxplot, the x-axis represents the compared
method and the y-axis represents the percentage IoU score.
Notably, our CLVAE gave the highest IoU score median. In
the spider graph, the axis represents the evaluation sites and
the numbers on all the concentric circles represent the possible
percentage IoU score from 0 at the center to 100 on the

outermost circle. The farther toward the end of the spike, the
larger the value. Closest to the center means closer to zero.
The outermost line represents the best performing model and
in the current scenario it is our proposed method CLVAE.

C. Qualitative Results
For qualitative analysis, we selected three geographically

different and challenging sites; Mekong, Bolivia, Slovakia
and Bosnia. The visualization of change maps is presented
in Figure 8 and 9, where (a) and (b) show the latest pre-
flood image and post-flood image, (c) show the ground truth,
(d) and (e) show the change map from supervised methods
ADS-Net and DAUSAR, (f), (g), (h), (i) and (j) show the
change map generated from log-ratio with otsu threshold, log-
ratio with Yen’s threshold, CVA, RaVAEn and our proposed
CLVAE respectively. The number below each change map is
the corresponding percentage IoU score.

The First two rows of Figure 8 show the detection results
on ’Bosnia’ site. Log-ratio detected a good part of the flooded
area correctly. But the detection is not smooth rather grainy
causing false negatives. The speckle noise in surrounding areas
is also adding false positives. CVA detected a good portion of
the flooded area but the change map contains high speckle
noise. RaVAEn detected changes in 32x32 patches showing
ill-defined pixelated change. The change map doesn’t contain
major false detection but also failed to detect most part of
the changes shown in ground truth. Our CLVAE also couldn’t
detect the flooded area with huge success but provided signif-
icantly good detection in comparison to others. The generated
change map contains very low false detection and did not
suffer from speckle noise. It is noteworthy that the supervised
method ADS-Net is missing a good part of the flooded area
and DUASAR suffers from a large amount of false detection
whereas our unsupervised method CLVAE produced relatively
good detection results. In terms of IoU, CLVAE gave 11 to
23% better score than the compared methods.

The third and fourth rows of Figure 8 shows the de-
tection results on ’Bolivia’ site. The detection on this site
is comparatively better than the ’Bosnia’ site. CVA shows
good detection results and doesn’t suffer from speckle noise.
However, both log-ratio and CVA missed a significant part
of the flooded area(change). The detection from RaVAEn is
also better but lacks details due to the coarse resolution of
the output change maps. Both supervised methods show good
detection results but ADS-Net suffers from false negatives and
DAUSAR suffers from false positives. Compared to the six
methods our CLVAE method resulted in a clear and speckle-
free change map. On ’Bolivia’ site, the IoU score of CLVAE
is 10 to 30% better than the compared methods.

The last two rows of Figure 8 show the detection results
on ’Mekong’ site. All the CD methods performed well on
this site. The supervised methods ADS-Net and DAUSAR
outperformed unsupervised CD methods. Among unsupervised
results, log-ratio has problem of grainy detections, both CVA
and RaVAEn missed some of the changed areas, RaVAEn
suffers from pixelated detection and CLVAE missed small
flooded streams. On an average all methods detected majority
of the flooded areas.
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Fig. 8. Qualitative Comparison: (a), (b) and (c) represents latest pre flood image, post flood image and binary ground truth. The remaining images shows
comparison of (d) ADS-Net, (e) DAUSAR, (f) Log-ratio with otsu threshold, (g) Log-ratio with yen’s threshold, (h) CVA, and (i) RaVAEn with (j) our
proposed CLVAE CD method. The number below each change map is corresponding percentage IoU score.
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Fig. 9. Qualitative Comparison: (a), (b) and (c) represents latest pre flood image, post flood image and binary ground truth. The remaining images shows
comparison of (d) ADS-Net, (e) DAUSAR, (f) Log-ratio with otsu threshold, (g) Log-ratio with yen’s threshold, (h) CVA, and (i) RaVAEn with (j) our
proposed CLVAE CD method. The number below each change map is corresponding percentage IoU score.

Two more samples from ’Slovakia’ and ’Bolivia’ sites are
are shown for evaluation in Figure 9. The first two rows
shows the detection results on ’Slovakia’ site, where ADS-Net
gave better(2% better IoU score) detection results compared
to CLVAE. Whereas, the second sample from ’Bolivia’ site
shows that best results are provided by our CLVAE.

VI. EXPERIMENTS

A. Performance With Respect to different Distribution Differ-
ence Methods

As discussed in Section IV-F, with our proposed CD
architecture, different choices of difference between N1 =
N (µ1, σ1) and N2 = N (µ2, σ2) are possible for change
detection. Here, we tested four different methods for calcu-
lating distribution difference, namely Kullback-Leibler Diver-
gence (KLD), Jensen-Shannon Divergence (JSD), Euclidean

Distance (ED) and Cosine Distance (CosD). The KL and
JSD methods operate on full distribution (using both mean
and variance), whereas we use ED and CosD only on the
mean parameter of the distribution. The formulas for all four
distance functions is given in Eq. 8 – 11, where P , Q are
the distributions, µ represents mean, σ is variance and ‖‖
represents L2 normalization function.
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KLD(N1‖N2) =
∑

log(
σ2
σ1

) +
σ2
1 + (µ1 − µ2)

2

2σ2
2

(8)

JSD(N1‖N2) =
KLD(N1‖Nm)

2
+
KLD(N1‖Nm)

2
(9)

where, Nm = N (
µ1 + µ2

2
,
(σ1 + σ2)

2
)

ED(N1,N2) =

√∑
(µ1 − µ2)2 (10)

CosD(N1,N2) = − µ1

‖µ1‖
.
µ2

‖µ2‖
(11)

The average metric calculated by the mentioned four meth-
ods is shown in Table IV where CosD shows the best mean
precision, F1 score and IoU value. The recall with CosD
function is lower in comparison to other compared functions.
It is important to point out that KLD, JSD, and ED resulted in
similar values. This can be explained as follows, as explained
in subsections IV-C and IV-E, in the training process, our
network is guided to learn input data as standard normal
distribution encouraging the variance to be 1. As a result,
the majority of variance values from the trained encoder, at
inference time, turn out to be 1 as well. This is true for both pre
and post-flood images. If we equate σ1 and σ2 to 1 in KLD eq.
8, it comes down to 1

2

∑
(µ1 − µ2)

2. At this point, both ED
and KL values are some positive fraction of

∑
(µ1 − µ2)

2.
In the calculation of distribution difference 1, the threshold
for KLD, JSD, and ED is set to 0.0 indicating that only the
existence of change is considered and not the magnitude of
change. This condition equalizes the change maps from KLD
and ED methods. The same explanation is valid for results
with the JSD method as well. Therefore, we end up with ED
and CosD as two different difference measures. On average,
both distribution difference functions show similar results but
these values are significantly different on individual sites.

TABLE IV
PERFORMANCE VARIATION WITH RESPECT TO DISTRIBUTION

DIFFERENCE FUNCTIONS.

Mean R Mean P Mean F1 Mean IoU
KLD 80.37 69.84 73.93 62.64
JSD 80.37 69.84 73.93 62.64
ED 80.37 69.84 73.93 62.64

CosD 77.01 74.90 75.43 64.53

B. Performance Variation With Respect to Number of Residual
Blocks

In the encoder part of our proposed network, the first two
residual blocks downsample the input data. The third block is
for feature learning without downsampling. Before reaching
our network architecture settings, we experimented with the
number of non-downsampling residual blocks. The average
results of the conducted experiments are shown in Table
V. Best results were recorded with one non-downsampling
residual block, therefore this setting is used in our proposed
network. Increasing the number of residual blocks further

shows a slight decrease in the performance. Also, note that
our approach is unsupervised and use limited training data.
Therefore a shallow network is an appropriate choice hence
the behavior.

TABLE V
PERFORMANCE VARIATION WITH RESPECT TO NUMBER OF RESIDUAL

BLOCKS.

Blocks Mean R Mean P Mean F1 Mean IoU
0 75.30 72.46 72.67 61.13
1 77.01 74.90 75.43 64.53
2 74.97 71.75 72.17 60.26

Fig. 10. Ablation results visualized with boxplot depicting mean IoU score
across all sites. X-axis represents mean IoU score and y-axis represents
boxplots for BASE network, BASE with Convolution LSTM network and
our proposed CLAVE method which is BASE network with convolutional
LSTM and trained with contrastive learning.

C. Ablation Experiments

The term “ablation study” is borrowed from the medical
field that consist of removing parts of the nervous system
of vertebrates to understand their purpose. This technique
was originally introduced by the French physiologist M.J.P.
Flourens [59]. In DL, ablation is removal of parts of the
network and analysing the performance of the resulting net-
works. It helps in investigating the contribution of different
parts or techniques used in the DL network. In this study we
conducted an ablation of convLSTM and contrastive learning
method. Quantitative results are shown in Table VI.

TABLE VI
ABLATION STUDY. COMPARISON OF BASE ARCHITECTURE WITH

CONVOLUTIONAL LSTM, BASE ARCHITECTURE WITH CONTRASTIVE
LEARNING AND OUR PROPOSED CLVAE NETWORK.

Mean R Mean P Mean F1 Mean IoU
BASE 74.75 69.99 70.87 58.44

+ ConvLSTM 76.90 73.95 73.68 61.89
+ Contrastive Learning 77.01 74.90 75.43 64.53

The ’BASE’ network refers to the encoder-decoder based
VAE reconstruction network. The four metric values given
in the table are averaged over all the sites. The results
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Fig. 11. Qualitative Comparison for Ablation Study: In first row (a), (b) and (c) represents latest pre-flood image, post-flood image and ground truth. In
second row (d), (e) and (f) represents detection results from BASE network(encoder-decoder based VAE), BASE with Convolutional LSTM, and proposed
CLVAE CD method(BASE with Convolutional LSTM trained using contrastive learning). The number below each change map is corresponding percentage
IoU score.
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depict that convLSTM helped the network to learn better
representation and lead to better recall, precision, F1 score,
and IoU. Contrastive learning, on the other hand, improved the
precision of the results at the risk of lower recall. Contrastive
learning also provided better F1 and IoU score, indicating
that training the model with contrastive learning reduce false
detections (FN and FP). Figure 10 gives further insight into
the ablation study in form of box plots depicting IoU score on
y-axis. From left to right we see an increase in median value
or increase in length of the upper quartile, which indicates an
increase in IoU score for at least 50% of the sites.

For the qualitative analysis of the effect of ConvLSTM and
contrastive learning can be seen in the two samples shown
in Figure 11. In the first sample from Bolivia, ConvLSTM
(e) detected more changes but also added speckle noise in
some regions. The speckle-noise is then removed by con-
trastive learning (f). In the second sample from ’Somalia’ site,
ConvLSTM (e) eliminates false detections and gave more true
positives at the risk of small speckle noise. The speckle noise
is then removed with the help of contrastive learning(see (f)),
leading to a better IoU score.

ConvLSTM helps in learning better feature representation
and can detect the changes more efficiently. But at the same
time, it introduces speckle noise to the result, which is
handled by training the model with contrastive learning. With
contrastive learning, our model learns speckle noise and avoids
that to be part of a change. This in turn helps the framework
identify meaningful differences between pre and post-flood
images.

D. Performance Variation With Respect to Time Series Length

In this section, we show how our proposed CD network
performed with smaller and bigger time series data. Before
selecting the settings of the proposed CLVAE model we
experimented with different time series lengths. The average
quantitative results corresponding to 2, 4, and 8 time series
lengths are given in Table VII. Our network’s performance
improved as we increased the time series length from two to
four. We see a small decline when the network is supplied
with eight pre-images. The observed reason is an increase in
seasonal changes and frequent partial flooding. Our network
gave the best detection results with pre-images from the same
season. It is noteworthy that, at the cost of a small decline in
performance of the network is still reliable to use for a longer
time series.

TABLE VII
PERFORMANCE VARIATION WITH RESPECT TO LENGTH(2, 4 AND 8) OF

TIME SERIES.

Mean R Mean P Mean F1 Mean IoU
2 72.20 68.40 70.24 54.14
4 77.01 74.90 75.43 64.53
8 77.19 71.68 73.65 62.40

E. Performance Variation With Respect to Patch Size.

We also experimented with the network’s input patch size.
The average metric values of the results are shown in Table

VIII. The network performed best with patch size 16x16.
Our CD network uses patch-wise distribution differences to
generate the final change map. As we increase the patch size,
the network fails to capture small changes efficiently through
the distribution difference. Therefore smaller patch gave better
results shown below.

TABLE VIII
PERFORMANCE VARIATION WITH RESPECT TO INPUT PATCH SIZE.

Mean R Mean P Mean F1 Mean IoU
16x16 77.01 74.90 75.43 64.53
32x32 76.08 69.45 71.56 59.22

F. Generalizability

The generalizability of a network is its capability to generate
good results on unseen sites. Our proposed CLVAE is an
unsupervised CD network and hence requires no label for
training. This means that we do not need to rely on the
generalizability of our model. Rather we can train it on
unlabeled SAR data from any area of interest covered by SAR
satellite (Sentinel-1) and use it for CD. However, we conducted
experiments to investigate the generalizability of our proposed
unsupervised CD method compared to the supervised methods.

We trained our CLVAE network only on pre-images from
’Spain’ flood site and took inference on all CEMS sites. The
generated average results are given in Table IX. This experi-
ment shows that our unsupervised method is still performing
better than the supervised Sen1Floods11 benchmark method.
On average CLVAE gave better precision, F1 score and IoU
score. It is also worth noting that, the supervised method
DAUSAR gave a high recall but really low precision. Big
difference between recall(high) and precision(low) indicates
a lot of false positives, which we can see in the qualitative
results presented in Figure 12. ADS-Net on the other hand
gave lower recall as well as lower precision compared to our
proposed unsupervised change detection method,

TABLE IX
GENERALIZABILITY COMPARISON OF PROPOSED UNSUPERVISED CLVAE

METHOD WITH TWO SUPERVISED METHODS ADS-NET AND DAUSAR
TRAINED ON SEN1FLOODS11 BENCHMARK.

Mean R Mean P Mean F1 Mean IoU
CLVAE 78.49 71.52 74.8 59.79

ADS-Net 62.21 69.74 60.36 47.39
DAUSAR 88.49 53.86 63.70 51.26

For qualitative comparison, change maps for two flood sites
’Australia’ and ’Bosnia’ are shown in Figure 12. In both
samples, the supervised method detected a large portion of the
non-flooded area as flooded. Therefore generate false positives.
Whereas our CLVAE gave significantly better CD results. On
’Australia’ site CLVAE outperformed the supervised method
by 3 to 13% and on ’Bosnia’ site by 6 to 14%. Even though
we see a drop in CLAVE performance when it is trained on
one site and inference is taken on others, the drop is not
that high. The CD by CLVAE is still generalizable to other
geographically different and unseen sites.
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Fig. 12. Qualitative Comparison for Generalizability Test: (a) represents post flood image, (b) represents ground truth, (c) represents change map from
supervised Sen1Floods11 benchmark method, and (d) represents change map from our proposed CLVAE method. The number below each change map is
corresponding percentage IoU score.

VII. CONCLUSION

In this paper, we proposed a novel unsupervised remote
sensing CD method based on a probabilistic model. Our
method CLVAE cumulatively benefits from the reconstruction
approach, latent parameters learning of probabilistic autoen-
coder, distribution difference method, convolutional LSTM,
and contrastive learning techniques. Our model strongly learns
the spatiotemporal correlation between time series SAR data.
The extensive experimental results on Sen1Floods11 data and
CEMS data display the potential of the proposed CD method.
Our method yield 64.53% average IoU and 75.43% average
F1 score. Our results have surpassed the performance of
existing unsupervised non-DL methods i.e. log-ratio, CVA, and
unsupervised DL method RaVAEn. On average our CLVAE
has a lead of 10-21% in terms of F1 score and 7-27 % in terms
of IoU score. As 6 out of 9 sites in our evaluation data are from
Sen1Floods11 test data, we also compared our results with
the supervised methods ADS-Net and DAUSAR trained on
Sen1Floods11 dataset. Our unsupervised CD method CLVAE
shows a lead of 6% F1 score and 7% IoU over compared
supervised method. Further to this, we also presented a change
point detection framework based on our CD method. The
framework can detect changes at early stages which in turn can
save lives through timely evacuation, alerts, and other disaster
management activities. In light of new satellite missions, a
better temporal frequency of one or two images per day can
be immensely helpful in monitoring the change point. The
proposed method and framework are light on memory, have
low computation time(faster training and inference), and are
also inexpensive in terms of data preparation as no annotation
is required.

In this study, we proposed a CD method on Sentinel-1 SAR
data and presented its efficiency in detecting floods. In future

we will test and extend our change detection method in other
applications areas as well. Different remote sensing sensors
capture specific features of the scene. In our future works we
would like to train our network with complimenting features
from multi-sensors. Another potential direction is urban flood
detection using high-resolution data, where our model can
be trained to detect flooded buildings and roads at a better
resolution. This can help local transport agencies to reroute
the traffic saving lives of pedestrians and drivers.
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