

Modelling Magnetic Turbulence with log-normal Intermittency by continuous Cascades

SFB1491

Jeremiah L
übke¹, Frederic Effenberger², Horst Fichtner² and Rainer Grauer¹

¹Institute for Theoretical Physics I, Ruhr-University Bochum ²Institute for Theoretical Physics IV, Ruhr-University Bochum

Motivation

The solar wind is highly intermittent as shown by numerous observations, yet charged particle transport is predominantly modelled as a simple Gaussian process. Magnetic turbulence is modelled in this context by a prescribed

Cascade Algorithm

Intermittency is accounted for by an **infinitely** divisible stochastic process in scale $\omega_{s \cdot s_{\max}}(s\mathbf{x}) \stackrel{\text{law}}{=} \Omega_s + \omega_{s_{\max}}(\mathbf{x}) \text{ with } \Omega_s \sim \mathcal{N}(-\sigma_s^2/2, \sigma_s^2),$ $\sigma_s^2 \propto \mu/s^{d+1}$. This leads to log-normal multifractal

energy spectrum with random phases.

Intermittency is characterized by heavy-tailed distributions of field increments $\delta B(d) = B(x + d) - B(x)$, which scale anomalously with the increment distance. This anomalous scaling is encoded in the scaling exponents ζ_p of the structure functions

 $S_p(\mathbf{d}) = \langle [\delta \mathbf{B}(\mathbf{d}) \cdot \mathbf{d}]^p \rangle \propto d^{\zeta_p}.$

Additionally, magnetic turbulence exhibits distinct **coherent structures** in contrast to unstructured random phases models. Effective descriptions of charged particle transport in realistic magnetic turbulence are missing so far.

scaling with intensity μ $\langle \exp p \, \omega_s(\mathbf{x}) \rangle \propto s^{-\frac{1}{2}\mu(p-p^2)}.$

A divergence-free vector field in dimension d with spectral index H is obtained by a weighted wavelet transform and application of curl

$$\mathbf{v}(\mathbf{x}) \propto
abla imes \int_{s_{\min}}^{s_{\max}} s^{H-d} \left(e^{\omega_s} st \psi_s
ight) (\mathbf{x}) \, \mathrm{d}s \, .$$

Prototypes of coherent structures are introduced by considering the MHD equations in Elsässer variables with neglected RHS, i.e. $\nabla P_{\text{total}} \rightarrow 0$

 $(\partial_t + \mathbf{z}_{\pm} \cdot \nabla) \mathbf{z}_{\pm} = -\nabla P_{\text{total}}$

with the Lagrangian solution

 $\mathsf{z}_{\pm}(\mathsf{x}_t, t) = \mathsf{z}_{\pm}(\mathsf{x}_0, 0),$ $x_t = x_0 + t z_{\pm}(x_0, 0).$

 \mathbf{z}_{\pm} are two independent realizations of the field \mathbf{v} .

Result: vector potentials $A_{\pm}(x)$, multifractal fields $\omega_{\pm}(\mathbf{x})$, coordinate arrays \mathbf{x}_{\pm} for $s \in \{s_{\min}, \cdots, s_{\max}\}$ do $\sigma^2 \leftarrow c_d \mu \Delta s \Delta x^d s^{-d-1}$

Magnetic field measurement by SolO, exhibting intermittency as seen by the increment distributions and scaling exponents

0.7 \sim 0.2 0.6 0.1

(ii) Random phases turbulence

The structural differences between MHD simulations and random phases model illustrated by field line tracers (red) and charged particle trajectories (black)

generate $arOmega_{\pm}\sim\mathcal{N}\left(-\sigma^{2}/2,\sigma^{2}\mathbb{I}
ight)$; $oldsymbol{\omega}_{\pm} \leftarrow oldsymbol{\omega}_{\pm} + extsf{mollify}_{ extsf{s}}(arOmega_{\pm});$ $\mathsf{A}_{\pm} \leftarrow \mathsf{A}_{\pm} + \Delta s \, s^{H-d} \, (\psi_s * \exp \omega_{\pm});$ $\mathbf{x}_{\pm} \leftarrow \mathbf{x}_{\pm} + \mathrm{cfl} \cdot \mathbf{s} \cdot \nabla \times \mathbf{A}_{\mp};$ end $\mathsf{A}_{\pm}(\mathsf{x}), \omega_{\pm}(\mathsf{x}) \leftarrow ext{interp}(\mathsf{A}_{\pm}(\mathsf{x}_{\pm}), \omega_{\pm}(\mathsf{x}_{\pm}));$

First Results

Outlook

- Employ wavelets with scale-dependent anisotropy inspired by critical balance $k_{\parallel} \sim k_{\perp}^{2/3}$
- Implement the cascade algorithm in a grid-free fashion to achieve wider dynamical ranges
- Consider compressible turbulence

(ii) Intermittent

(iv) MHD (iii) Lagrangian mapping

> Slices through the field strength of the four considered models

Acknowledgements & References

I'm grateful to Mike Wilbert for performing the MHD simulations and providing the resulting data.

① Daniele Telloni *et al* 2021 *ApJL* **912** L21 2 Jean-François Muzy 2019 Phys. Rev. E 99 042113 **3** Prachanda Subedi *et al* 2014 *ApJ* **796** 97 Anvar Shukurov et al 2017 ApJL 839 L16 **5** Alexander A. Schekochihin 2022 *J. Plasma Phys.* **88** 155880501

