

Insights to the short-term atmospheric deposition impacts on the biology and chemistry of the sea surface microlayer in the Adriatic Sea coastal region

<u>Andrea Milinković</u>¹, Abra Penezić¹, Ana Cvitešić Kušan¹, Saranda Bakija Alempijević¹, Valentina Gluščić², Silva Žužul², Ivana Jakovljević², Sanda Skejić³, Danijela Šantić³, Ranka Godec², Gordana Pehnec², Carola Lehners⁴, Maren Striebel⁵, Jutta Niggemann⁵, Anja Engel⁶, Jelena Godrijan¹, Blaženka Gašparović¹, Mariana Ribas Ribas⁴, Oliver Wurl⁴, and Sanja Frka¹

¹Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia ²Institute for Medical Research and Occupational Health, Zagreb, Croatia ³Institute of Oceanography and Fisheries, Split, Croatia ⁴Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Germany ⁵Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Germany ⁶GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany

models:

Aethalometer model HYSPLIT model

LOTOS-EUROS model

🕅 Particulate matter

- total **PM₁₀ mass** by gravimetric weighing
- anions and cations in aqueous extracts by ion chromatography (IC)
- trace metals (TMs) by inductively coupled plasma mass spectrometry (ICP-MS)

C Deposition

- anions and cations by ion chromatography (IC) and UV-Vis spectrophotometry
- trace metals (TMs) by inductively coupled plasma mass spectometry (ICP-MS)

🛠 Sea water (SML and ULW)

dissolved (< 0.7 µm)

particulate (> 0.7 μm)

- dissolved organic carbon (DOC) by the HTCO method
- nutrients by UV-Vis spectrophotometry
- dissolved lipids (DL) after liquid-liquid filtrate extraction
- dissolved and total surface active substances (SAS) by anode dissolution voltammetry
- total dissolved carbohydrates (DCHO) spectrophotometrically
- trace metals (TMs) by voltammetry
- phytoplankton communities sedimentation by Utermöhl
- **phytoplankton abundance** by inverted microscope
- **abundance of heterotrophic bacteria** (HB) by flow cytometer

- particulate organic carbon (POC) from the filter by the HTCO method
- classes of particular lipids (PL) by thin layer chromatography with flame ionization detector (TLC-FID) after extraction of the filter with organic solvents
- transparent exopolymer particles (TEP) and
 Coomassie stainable particles (CSP)
 spectrophotometrically after filter staining
- total particular carbohydrates (PCHO) spectrophotometrically
- chlorophyll a (Chl a) spectrophotometrically

Calculation of nutrient fluxes:

Wet depostition flux (F_w):

C_w – measured conentraions in rainwater V – volume of rainwater collected A – opening area of the collection device

Dry deposition flux (F_d):

$F_d = C_d \times V_d$

 C_d – measured concentration of water soluble ions in the aerosol samples V_d – deposition velocity

 $V_d(NO_3^{-}) = 1.2 \text{ cm s}^{-1}$ $V_d(NH_4^{+}) = 0.6 \text{ cm s}^{-1}$ $V_d(PO_4^{-3^-}) = 2.0 \text{ cm s}^{-1}$

Enrichment factor:

 $EF(X) = [X]_{SML} / [X]_{ULW}$

Suppression effect:

$$k_w[\%] = 32.44[SAS_{SML}] + 2.51$$

Pereira et al., Nat. Geosci., 2018

Aethalometer source apportionment of BC:

the Central Adriatic coastal site during the period from February to June 2019, denoting different seasons: winter (February to March), spring (April to May) and summer (June).						
Month	February	March	April	May	June	
BC _{ff}	0.63 ± 0.58	0.47 ± 0.37	0.34 ± 0.28	0.24 ± 0.22	0.46 ± 0.23	
	0.42, 0.22-0.92	0.39, 0.20-0.61	0.28, 0.19-0.40	0.19, 0.11-0.30	0.43, 0.32-0.55	
BC _{bb}	0.26 ± 0.20	0.15 ± 0.15	0.10 ± 0.10	0.04 ± 0.04	0.05 ± 0.04	
	0.21, 0.10-0.38	0.10, 0.05-0.20	0.07, 0.04–0.13	0.03, 0.01-0.06	0.05, 0.02-0.07	
%BC _{bb}	32 ± 7	24 ± 5	22 ± 5	16 ± 5	10 ± 1	
	31, 28–35	26, 21–28	22, 18–26	14, 12–18	10, 9–11	
Season	Winter		Spring		Summer	
D O	0.50 + 0.47		0.00 / 0.00		0.46 + 0.00	

Mean $\pm 1\sigma$ variation and median, 1st quartile – 3rd quartile of BC_{ff} and BC_{bb} concentrations (μ g m⁻³) as well as the BC_{bb} contribution to total BC (%BC_{bb}) determined at the Central Adriatic coastal site during the period from February to June 2019, denoting different seasons: winter (February to March), spring (April to May) and

0.53 ± 0.47	0.29 ± 0.26	0.46 ± 0.23		
0.39, 0.21-0.68	0.23, 0.14-0.35	0.43, 0.32-0.55		
0.20 ± 0.18	0.07 ± 0.08	0.05 ± 0.04		
0.13, 0.06-0.28	0.05, 0.02-0.09	0.05, 0.02-0.07		
28 ± 7	26 ± 6	10 ± 1		
28, 22–31	18, 14–24	10, 9–11		
February – June 2019				
	0.41 ± 0.37			
0.31, 0.18–0.51				
	0.12 ± 0.14			
0.07, 0.03–0.14				
21 ± 8				
	21, 14–27			
	$\begin{array}{c} 0.53 \pm 0.47 \\ 0.39, 0.21 0.68 \\ 0.20 \pm 0.18 \\ 0.13, 0.06 0.28 \\ 28 \pm 7 \\ 28, 22 31 \end{array}$	$\begin{array}{c cccccc} 0.53 \pm 0.47 & 0.29 \pm 0.26 & \\ 0.39, 0.21 - 0.68 & 0.23, 0.14 - 0.35 & \\ 0.20 \pm 0.18 & 0.07 \pm 0.08 & \\ 0.13, 0.06 - 0.28 & 0.05, 0.02 - 0.09 & \\ 28 \pm 7 & 26 \pm 6 & \\ 28, 22 - 31 & 18, 14 - 24 & \\ \hline \hline \\ \hline$		

Deposition fluxes of $PO_4^{3^-}$, NO_3^- and NH_4^{\pm} :

Mean \pm standard deviation of dry, wet and total (dry + wet) inorganic N and P deposition fluxes (µmol m⁻² d⁻¹) and the contribution of each species to the respective total inorganic N and P deposition (in brackets) at the central Adriatic coastal site calculated when both wet and dry deposition occurred.

	Dry deposition	Wet deposition	Total deposition
NH4	17.1 ± 15.1 (13 %)	59.0 ± 33.4 (41 %)	65.3 ± 33.4
NO3	25.4 ± 18.9 (19 %)	39.7 ± 23.4 (27 %)	57.9 ± 21.7
PO43-	1.4 ± 0.3 (88 %)	0.2 ± 0.1 (12 %)	1.6 ± 0.3
DIN ^a	42.5 ± 32.5 (32 %)	98.7 ± 56.2 (68 %)	123.2 ± 53.2
DIN/PO ₄ ³⁻	30 ± 21	648 ± 213	79 ± 30

DIN dominating in total deposition (68% wet)

 $PO_{4^{3^{-}}}$: 88% in dry deposition

2-week post-fire period:

 $DIN/PO_4^{3-} = 648$ in wet deposition $DIN/PO_4^{3-} = 103$ in total deposition (70) Environmental implications:

Assumptions:

C/N ~ 6.6

- i) all atmospherically deposited soluble NO₃⁻ and NH₄⁺ are bioavailable to primary producers
- ii) there is no co-limitation by other nutrients

 $F_{tot}(DIN) = 123.2 \ \mu mol \ m^{-2} \ d^{-1} \ or \ 1.96 \ mg \ N \ m^{-2} \ d^{-1}$ \downarrow $\sim 800 \ \mu mol \ C \ m^{-2} \ d^{-1} \ or \ \textbf{10} \ \textbf{mg} \ \textbf{C} \ \textbf{m}^{-2} \ \textbf{d}^{-1}$

```
Adriatic Sea (2013 – present) = 154 mg C m<sup>-2</sup> d<sup>-1</sup>
\downarrow
```

up to 6 % of new production in the central Adriatic coastal area

11% considering the highest values of DIN deposition

BB event: $k_w = 24.1 \%$ non BB: $k_w = 7.8 \%$ BB $k_w = 3 \times \text{non BB } k_w$ \downarrow suppression of CO, exchange

Thank you for the attention!

contact: amilink@irb.hr

Publications:

Project:

This research was financed by the Croatian Science Foundation BiREADI project (IP-2018-01-3105).