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We use satellite images with labelled landslide masks from known events to train a Machine Learning algorithm to automatically
identify areas where landslides have taken place. These masks are time-consuming to create, resulting in a small initial training set.
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U-Nets are image segmentation algorithms, a type of classifier that assigns a label to each individual pixel in an image. These models
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further help the model learn the invariance and robustness
to be expected in the data.
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This network consists of a contracting path, with the usual

I e/ N e

architecture of a CNN (left side, Fig. 1), and an expansive | e e Training Metric
path (right side). The number of feature channels doubles = 2 RGB bands, No DT B | Metric
i i ; q et -,;m'fﬂ'f] = conv 3x3, RelLU o o F1
at each downsampling step, and is halved again at each EE win i "B g, No ST - in F1 loU
step of the expansive path. As a result, each pixel of the D*D'D o E-E-E § maxpooi 2x2 RGB bande; o o7 N | | loU All band O o
input |magel Wh|Ch can be Singlel or multi_bandl iS M ,V;,i]*| 1024 . & | S 4 up-conv 2x2 Uniform weights _ Precision D_I?I\r/} S Precision
assigned to a class or category. = conv 1x1 s ot or D = Recall Balanced Recall
hi . n n ¢ , ¢ Fig. 1. U-Net architecture, as represented by Ronneberger et al. (2015). Each blue box represents a RG‘;";l”:éig:ﬂ - 1In BN Accuracy Weig hts Accuracy
This deS|gn won't e. ISBIC allenge or Seg'mentan.on O multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is BOIfﬂnﬁéightJ _ All ' bands All bands
neuronal structures in electron microscopic stack in 2015. provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows A it weights | No DTM DTM
denote the different operations. Al bands, No OTM B O _ All bands
All bands, No DTM{ _ 60/10 Unlfo m DTM -
Pomo elghts weights weights 60/10
O o il i
i - All bands weights Al bands
DATA R e No DTM DTM
no . 60/10 00710
Al oends O B | ) weights weights
gt - 1N Validation
RGIEaFaanncc::a vagig;tng _ M e t ri C
RGB bands, No DTM AII bands
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Fig. 2. Location of the mapped landslides included in our datasets. Although some "S0716 weights 1l 60/10 landslides for a wide range of settings. Left columns contain the original (augmented) tiles, central columns the ground truth, or target, and right columns the predictions obtained from our U-
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Finally, we applied random flips, rotations, translations and g weights Fine tuning of the sample weights to improve the quality of the predictions.
zooms to both satellite images and ground truth masks, as oLl bancs, o N * Increasing the resolution of the satellite imagery or digital terrain model.
well as random variations of brightness, contrast and noise Al bands, DTH |
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levels to satellite images (Fig. 3). Tiles with landslides were o = ﬁ}]dscig)g %?(?rtgc?:]pphucilsoglcal features such as slope units, DTM derivatives, different satellite imagery/information (other non RGB bands, radar,
augmented more tlmes than those W,IthOUt’ to reduce bias _ _ _ _ Fig. 6. Cumulative bar plots of the metrics obtained for our Fig. 6. Cumulative bar plot of the metrics obtained for our TEST-ONLY dataset, which includes only images from the two locations we excluded from our training, validation . . . . ' . N
towards non-landslide images and pixels. Fig. 3. Example of some data augmentations applied to one of the tiles and masks from Glengyle. training, validation and testing datasets. In all cases, our and test datasets. All models were trained for 25 epochs. From the inside out, these metrics correspond to the F1 Score, loU (Intersection over Union), precision, recall and « Benchmarking our algorithm against other publicly available datasets, such as the one used for the Landslide4Sense competition.
model was trained for 25 epochs. accuracy. All these metrics vary from 0 to 1, with higher values corresponding to more accurate predictions.
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