

Ionospheric Impact on GNSS Reflectometry in the Tropical and **Polar Regions: A Simulation Study with NEDM model**

- elevation angles.
- increases due to the longer propagation path.

* Dielacher, H. Fragner, and O. Koudelka, "PRETTY – passive GNSS-Reflectometry for CubeSats," Elektrotech. Inftech., vol. 139, no. 1, pp. 25–32, Feb. 2022, doi: 10.1007/s00502-022-00993-7. ** M. M. Hoque, N. Jakowski, and F. S. Prol, "A new climatological electron density model for supporting space weather services," J. Space Weather Space Clim., vol. 12, p. 1, 2022, doi: 10.1051/swsc/2021044.

Mario Moreno^{1,3}, Maximilian Semmling¹, Mainul Hoque¹, Jens Wickert^{2,3}

mario.moreno@dlr.de German Aerospace Centre Institute for Solar-Terrestrial Physics

- ¹ German Aerospace Centre (DLR-SO).
- ² German Research Centre for Geosciences (GFZ).
- ³ Technische Universität Berlin (TUB).

The relative ionospheric delay varies depending on the elevation angle, latitude, and local time. Specifically, for elevation angles $<10^{\circ}$ and latitudes between 40° S and 40°N, the Δ^{iono} could vary up to ±20 meters.

In altimetry applications, minimizing the presence of ionospheric delay is advantageous. Consequently, the most favorable conditions entail nighttime observations at elevations ranging from 10° to 30° .

On the other hand, observations during daytime at elevation angles below 10° may be valuable for deriving ionospheric parameters through GNSS

