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Motivation

Background

Linear case Network case

Simple, (relatively) straightforward to 

characterize & understand.

How is behaviour affected by tributary 

sediment & water delivery?

Modelling 

transport-limited 

river networks: set 

up & assumptions.

Alluvial river networks, 

source to sink 

processes, 

sedimentary & 

geomorphic archives.



Alluvial rivers, source to sink processes, geomorphic and sedimentary archives 

• Alluvial river transport sediment from upstream sources to downstream sinks

• Sediment transport sensitive to climatic and tectonic forcing

• Fluvial landforms and sedimentary sequences may record information about past climatic and tectonic conditions

• We want to interpret these records in a quantitative way

Toro Basin, NW Argentina. A sequence of cut-and-fill terraces records 100 kyr eccentricity-driven climate cyclicity (Tofelde et al., 2019). Photo: Courtesy of S. Tofelde



Network effects

• Intuition about these systems mostly based on theoretical 

studies with simplified geometry (e.g. Paola et al., 1992)

• In real catchments, sediment and water accumulate at discrete 

intervals downstream

• Previous studies highlight importance of system response time, 

often defined in terms of system length

• ‘Length’ of a river network is not clearly defined

Toro Basin, NW Argentina. Terrace surfaces are continuous along 

trunk and tributary streams. Photograph courtesy of S. Tofelde. 

• Key questions:

• What complications are introduced by network configurations?

• Can we apply predictions from simplified, one-dimensional models to real-world networks?



Modelling transport-limited gravel-bed rivers (Wickert & Schildgen, 2019)

Account for valley 

width & dynamic 

channel width

Sediment and water supply 

set slope at valley inlet. 

Base level sets valley 

elevation at outlet.

• Conservation of mass

• Sediment transport

• Non-linear diffusion



• Assume signal is composed of small perturbations about some mean

• Dropping small terms leads to linear diffusion equation describing perturbation’s evolution

• Define system diffusivity

• Define system equilibration time

Perturbation analysis: A linearised diffusion equation



• Impose sinusoidal variation in sediment and water supply

• Obtain solutions for perturbation to valley-floor elevation 

and sediment discharge

Perturbation analysis: Solving the linearised equation

G (‘gain’) describes amplitude of response 

perturbation relative to the imposed forcing.

Above, the response (red) has half the amplitude of 

the forcing, hence G = 0.5.

φ (phase shift, ‘lag’) describes timing of response 

perturbation relative to the imposed forcing. Above, 

the response (red) is delayed by a quarter period 

relative to the forcing, hence φ/P = 0.25. 



Key controls on G and φ are forcing period (relative to system equilibration time) and position downstream. 

Variation in sediment discharge also depends on whether sediment or water supply is varied.

These patterns are highlighted in example simulations on the following slide.



ANIMATE

https://www.dropbox.com/s/armfcs819m5nuoh/linear_periodic.gif?dl=0


Exploring effects of network geometry

Run 2: 200x with 40 source streamsRun 1: 200x with 20 source streams Run 3: 200x with 2-60 source streams

• Key questions:

• What complications are introduced by network configurations?

• Can we apply predictions from simplified, one-dimensional models to real-world networks?

• Approach:

• Generate random network topologies

• Fix trunk length, mean sediment and water discharges

• Measure gain and lag numerically

• Compare to predictions from simplifies models

Example network set up

• Repeat for large number of network configurations:



Random network topologies constructed using algorithm described by Shreve (1974).

Sediment and water supplied at source streams with means across network held constant. 

Network geometries described by metrics such as the Hack exponent and Horton’s ratios.

Sinusoidal variation in sediment supply imposed at each source stream. Gain and lag measured numerically. 



ANIMATE

https://www.dropbox.com/s/nw0o3n7zsq02i8j/net_periodic.gif?dl=0


Broad patterns in gain 

and lag predicted for 

the linear case also 

arise for network case. 

Lower order tributaries 

characterised by 

higher gain and rapid 

downstream signal 

propagation. Signal 

can propagate 

upstream along trunk 

streams.



Define empirically a network’s ‘effective length’, Le, as that which minimises the difference between Gz at the 

network outlet and Gz at the outlet of a simple linear valley with the same total length and mean diffusivity. 



Properties of 200 randomly generated networks with 20 source streams.



Variation due to network geometry captured by empirically determined ‘effective length’.



Effective length also captures some variation in lag, but scatter remains. Lag reduced relative to linear case.



Weak correlation between effective length and most network metrics – except mean length.



Properties of 200 randomly generated networks with 20 & 40 source streams.



Variation due to network geometry captured by empirically determined ‘effective length’.



Effective length also captures some variation in lag, but scatter remains. Lag reduced relative to linear case.



Weak correlation between effective length and most network metrics – except mean length.



Properties of 200 randomly generated networks with 20 & 40 source streams.



Variation due to network geometry captured by empirically determined ‘effective length’.



Effective length also captures some variation in lag, but scatter remains. Lag reduced relative to linear case.



Weak correlation between effective length and most network metrics – except mean length.



Average ratio of effective to mean length approaches 1.4 for networks with ≳ 40 source streams.



Key points

• Alluvial river networks respond to external forcing in broadly similar ways to simple one-dimensional valleys

• Complications can arise around tributary junctions, depending on precise network geometries

• Low-order streams behave differently to trunk streams

• Simplified models can capture network behaviour – if appropriate lengthscale is chosen

• This ‘effective length’ is a constant factor of the mean distance from source to outlet 


