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Figure 5: Summary of the borehole data analysis correlated with the Quaternary chronostratigraphy (Cohen & 
Gibbard, 2019).Terrace levels with * have been age-dated in this study. Terrace age control proposed by Van den 
Berg & Van Hoof (2001).
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Introduction

The Mid-Pleistocene Transition is characterized by a major change in the 
climate cyclicity, in which the frequency of glacial and interglacial stages shifts 
from low-amplitude 40-ka cycle to high-amplitude 100-ka cycle. The impact of 
this transition is significant in both the marine and continental realms, with 
overall increase in the global ice volume, longer glacials and shorter 
interglacials. Concerning the mid-latitudes, especially in N and NW Europe, 
significant sea-level changes and intensification of periglacial processes are 
evident. We investigate the impact of the Mid-Pleistocene Transition on river 
systems by exploring the compositional and geometrical parameters of the 
Quaternary Meuse River terraces in the southern Netherlands (Figure 1). 

Hypothesis

As climate deteriorates along the Quaternary, and glacial stages become longer 
and colder, a response is expected from the Meuse River. The expected response 
could be in the form of changes in main sedimentlogical characteristics, and 
reorganization of the drainage system. Overall increase in the following 
parameters are expected: sediment input, average grain-size, average terrace 
thickness, average incision rates, average erosion rates. Colder and longer glacial 
stages are expected to decrease vegetation cover in the source zone, the Ardennes 
(western Rhenish Massif), intensifying (peri)glacial processes. 

Methods 

  Terrace mapping 

∙  ∙  Exploratory borehole data analysis 

∙  Age-date of terrace burial with cosmogenic 26Al-10Be isotopes 

Objectives 

Scan for 
abstract

∙  Estimate content and geometrical parameters of the terraces 

Figure 2: Cross-border terrace map and sampling 
location for cosmogenic age-dating

∙  Correlate these parameters with the known climatic and geological 
record of the Quaternary 

∙  Age-date the burial of specific terrace levels, and improve the age
control of the terrace staircase 

∙  Improve the understanding of the Quaternary development of the Meuse 
River from a source-to-sink perspective 

Results 

∙  
∙  

New burial age of the terrace level marking the abandonment of the 
East Meuse valley and starting of the carving of the West Meuse valley 
(Figure 3) 

Updated cross-border terrace map (Figure 2) 

∙  New burial age of the terrace level marking the onset of extreme 
incisional phase of West Meuse valley and shift from Higher/Main 
Terraces to Middle Terraces (Figure 4). 

∙  Temporal constraints for terraces lithological content, terraces 
thickness, terraces gradient (bottom and top surface) spanning the 
Quaternary (Figure 5).

New burial ages will be shown upon request 

Observations and discussion 

• Increasing trend of gravel content 
• Gradual removal of heavily weathered

overburden of the Ardennes? 
• Subsequent erosion of “fresh”

bedrock of the Ardennes? 
• Gravel front migration? 

• Relatively stable trend of terrace thickness 
• Climate deterioration does not seem to

strongly affect average thickness 
• Peak in C1 could be related to the onset

of the Elsterian glaciation 
• Average thickness slightly increases

after the onset of the MPT 

• Reversed gradient of the East Meuse: 
• Tectonic tilt? 
• Oversupply followed by avulsion? 

• Steepening gradients around Elsterian
and Early Saalian 

PIE SIM01

Figure 3: Borehole log and 
sampling location for 
Simple Burial Dating of 
sample SIM01 (in Figure 2)

Figure 4: (A) Classical isochron-burial and (B) P-PINI methods for estimating 
terrace burial age of sample PIE (in Figure 2). 
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