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Click thesel! —

Civilian supersonic aviation may return in the future. Their

emissions (especially non-CO,) have stronger impacts on our ~

. . - . . Navigate to
atmosphere compared to conventional aviation due to their high (| cocions

cruise altitudes (up to 20 km). m w Future

) Impact
scenario

Dublin Airport, 1983 (@DublinAirport, Twitter)

Policy

Updating policy for a future
scenario requires a complex
iterative trade-off. This process
requires the development of faster
methods to assess the impact.

Policy cycle

MORE & LESS oy S

Existing regulations for supersonic aircraft were drafted in 1983.
Regulators are looking to update them to account for non-CO,
emissions and their impacts on the atmosphere.
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Non-CO, emissions of supersonic aircraft have multiple ways of affecting the Ozone layer and climate [1-7].

NO, cycle .
— O; Impact
--..~ \
NO, converted to \\ \
HNO, \
N \ :
Seo I
> SO Heterogeneous I
~
chemistry* I
y I 0,isaGHG
0\(’\6 "
Acce\erate: 7 QO+ ¥

Climate impact

+ Black carbon,
hydrocarbons s Direct == =P |Indirect

*Chemical reactions on the surface of sulfuric aerosols

Regulators need to consider a trade-off Policy cycle
between different impacts, for which they
need tools to assess them. TU De|ft
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g In this process the speed of the
Scientific models calculate

_ scientific models is a bottleneck.
future impacts. .
Impact evaluation

Noise

Climate
Prediction of future supersonic use and FUture
emissions. Pictured: predicted aviation o Impa Ct Air qualit
emissions from the SCENIC project [5]. SCE na rIO g y

Ozone In this work we look at
Ozone, but this is just one

\ of several impacts that
regulators consider

Predicted impacts drive the
consideration of policy.

Policies affect the economic
viability of future markets and
expected future emissions.
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Entrainmant and
detrainment of
pollutants akoft

To evaluate the atmospheric
impacts of supersonic emissions,
we need chemistry transport &
chemistry climate models. These
model chemistry and transport
for hundreds of chemical species
across the atmosphere.

_.l

We make use of the GEOS-Chem
model for our simulations.

Modelling approach

Due to their complexity, these models need
high-performance computer clusters to use.

models solve for thousands of atmospheric cells

Even then, a single multi-year model
evaluation can take weeks to evaluate.

N x_A small part of the Snellius supercomputer,
“*  which we use for our research

Sensitivities of atmospheric ozone to supersonic emissions
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Future
scenario

Policy

Because of the resource requirements, these

models are unsuitable for in-the-loop
applications. For policy development we
need surrogate models, and sensitivity

studies are a first step towards them.
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We study the impact of supersonic emissions in two flight regions:
the transatlantic corridor (TAC) and south arabian sea (SAS).

In these regions we introduce
emissions representing 8 Tg of
annual fuel burn of a hypothetical
supersonic aircraft.

GE=S-Chem

Eyami®

With the  GEOS-Chem Chemistry

N Transport Model we evaluate the
Y impact of these emissions on a

modern atmosphere over the course

of 10 years. Model setup

Vemaps.com

We combine over 24 variations of these scenarios to
X24 calculate first- and second-order sensitivities of the
global ozone response in these regions.

Parametric study

Sensitivities of atmospheric ozone to supersonic emissions
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Two regions of anticipated use for supersonic flight are selected: These regions are located in different parts of the Brewer-
the transatlantic corridor (TAC) and south arabian sea (SAS). Dobson circulation, affecting how emissions and impacts

from these regions propagate. This is demonstrated below

with a simplified lagrangian model using MERRA-2
meteorology:
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These regions are chosen as they are likely to be used for supersonic Trajectories show average transport of emissions in june
aviation, even if overland supersonic flight restrictions are considered [1,5]. from the SAS and TAC. Vector field shows wind fields
Within these regions we introduce emissions representative of 8Tg of annual averaged over 3 years of data.

supersonic fuel burn. Emissions profile

Sensitivities of atmospheric ozone to supersonic emissions
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NO,: 1% HC: 0% . : . . .
H,O: 28% 0.144 Tglyr || 67.2 Gglyr The emissions profile estimates cruise emissions
10.08 Tglyr / of supersonic aircraft using conventional jet fuel.
CO: 0% These values are based on estimates of cruise
216 Galyr | emissions from literature [1-3]
. : kg : g
Estimated annual emissions g’gg gg}yr H,0:1.26 kg HC : 2.7 kg
(Hydrocarbons)
BC: 0% p p
2.4 Gglyr . . Y
NO, : 18 L CO:8.3
kg kg
. Ky
SO, :1.212 < BC:30%2
kg kg

CO,: 71%
25.2 Tglyr

HCO2 mH20 mNOx mHC mCO mSOx mBC

*The emission of CO, is not incorporated in the GEOS-Chem model.

Sensitivities of atmospheric ozone to supersonic emissions

(Black carbons)

CO,:3.15%
kg

We target the Mach 1.4 to Mach 2 design space,
resulting in a cruise altitude range of 16.2 to 20.4
km.
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~ . Emissions are introduced as a box volume

in @ 2014 atmosphere. For anthropogenic

emissions we use the CEDS v2

anthropogenic surface emissions inventory

" [8] and subsonic aviation emissions
estimated from ADSB data [9].

Vemaps.com % -

Part of the Snellius supercomputerj

We use v13.3.1 of the GEOS-Chem chemistry transport model
to evaluate the impact of these emissions over the course of 10
years. We use a global resolution of 4° x 5° (lat,lon) with 72
altitude layers and 20 minute timesteps.

Change in global column ozone (%)from
[ TAC emissions, evaluated by GEOS-Chem

GE#S-Chem

T L

2014-01-01

The model is ran using the Dutch national supercomputer
Snellius, with support of the dutch national e-infrastructure.

-0.4 -0.2 0.0 0.2 0.4
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We evaluate 12 perturbation experiments per emissions region, combining
different model outcomes to calculate various sensitivities.

Emissions profile
Normal emissions case ——\

20.4 km
+S0, +H,0 | +NO,

18.3 km 603 &8°03 6°0; 6%0;
6H '6NO,6H 6S6H 6H,06H
Altitude sensitivities

LNormal emissions case with 30% more H,O

16.2 km

Direct sensitivities

50; 603 603 60,
5L '8N0, &S ’'6H,0
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Results are grouped in several categories:
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SAS TAC

Generally the introduction of the emissions leads to
increases in global ozone across all scenarios with
altitudes below 19.3 km. Across all 20.4 km scenarios
ozone depletion outweighs lower-stratospheric
production instead.

Altituds [krn]
b

i
=]

Average 2021-2024 change in global column ozone [DU]
Base +NO, 480, +H,0
TAC SAS TAC SAS TAC SAS TAC SAS

16.2 kmm 0.3105 0.2870 0.4009 0.3724 0.2788 0.2628 0.3062 0.2871
18.3 km 0.1350 0.1025

10

E

g 20.4 km 0.3121 0.7160 0.4136 0.9014 0.3619 0.7500 0.3359 0.7270
-3 =

B
= B +1C +CO +NO,+50, +50,+11,0 +11,04+NO

2 162km 0318 03110
40 4 20.4 km 0.4576 0.9532 0.3850 0.8073 0.4353 0.9331

(preliminary)

#

The SAS region is more sensitive to global ozone
depletion. At 20.4 km we find over double the ozone
loss compared to equivalent emissions in TAC.

Altitude [km]

[
(=]

10

i 5| 6
T T T T T T T T T T T T r r
-75 -50 -25 0 25 50 75 -75 -50 -5 0 25 50 75 I U D Ift
N "M ‘ ’
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2014-01-01
Altitude [km]
180° 120°W 60°W 0° 60°E 120°E 180° 0 1.0 2|0 3.0 4|0 50
- TN S T e = Emissions from the TAC region stay
=N wj;_é%ﬁ Njﬁ ' \ mostly in the northern hemisphere, also
30°N AT e o 3 . e . . .
- . (‘ g _containing their impact. Supersonic
&

TAC « ‘\L’L{M‘? “1 };Wﬁz emissions lead to ozone increases in the
— - — 7 E,.\_é, ”} lower stratosphere, and depletion at
coes I : higher altitudes. The latter ends up

| e T ® =z larger, decreasing global column ozone.
- %w%%i{ v ;/?:ﬁ" = From theOI SAS hregion emissions hare
NGl f%** R more. effectively. This mcreases. czone
~ 5 . Z
!s 1

SAS « ‘%'iﬁ“? “’\& ? w.éﬁs';-;gi\ «— | depletion by NO, as well as mixing
30°5 - 7 ¢ :}' between hemispheres. Averaged globally,
coes I . can lead to up to double the ozone loss.

e T T
| e o ] 4 ,
Transport differences

I | [ —

—=1.00 —-0.75 —0.50 —-0.25 0.00 0.25 0.50 0.75 1.00 -4 -2 0 2 4
AO3% AD3%
Increases in Ozone Emission sources _
Ozone depletion —— Tropopause -] MORE & LESS Ear
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Spread of emitted black carbons 2014-01-01

Altitude [km)
180* 120°W 60°W o 60°E 120°E 180* © 10 20 30 40 50

Here we show the spread of emitted

o black carbon (soot) to highlight
] B differences in transport. Notice that in
TAC » the SAS region (lower) it takes around 2
30°s - years for the soot to saturate the

stratosphere, a year faster than TAC
emissions.

60°S

The faster and more effective transport to
the upper stratosphere enhances ozone

60°N

i depletion to NO,. Better hemispheric
SAS  « mixing also contributes to stronger global
30*5 impacts.
60°S
First-order sensitivities
-5 0 S 10 15
AO3%
Buildup of black carbon Emission sources .
— Tropopause _i_‘u D Ift MORE &. LESS 2
e Enronmencaly Sustinable Supersonis Aviation ,@ FEL
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Methodology

Title

Sensitivities, represent
the expected change in

Introduction
global ozone in
response to annual

18 I
emissions.
-23.588
-34.564

——

-3.6
-7.873

H20 (mDU/Tgyr)

SOx (mDU/Ggyr)

-4.292

NOx (mDU/Ggyr

_2.351 (mDU/Ggyr)
=
—

B 2143
H20 (mDU/Tgyr
-1.416 || (mbU/Tey)

= 20.4 km

= 16.2 km

-16.767
SOx (mDU/Ggyr
- mov/een
1.977
NOx (mDU/Ggyr
I 2.094 ( /Geyr)
—

(preliminary)

-40 -30 -20 -10 0 10

H SAS mTAC
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e
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Sensitivity |

Results Conclusions References

In the SAS region we find stronger sensitivities to NO,
emissions, and reduced ozone depletion from sulfurs and
H,O emissions compared to the TAC region, especially at high

altitudes
Estimated fuel burn sensitivity

Kawa e al 1999 A Fritzetal 2022 (adipint) - 52,57 N m  Zhang et al. 2021

t'ﬂ--..._____q = This work [TAC]

= This work (5A5)

(=)
L

b

=100

=150

—-200

13 20 21 Frd
Alttude [km)

At 16.2 km the estimated fuel burn sensitivities converge due
to the similar NO, sensitivities at this altitude. At this altitude

the SAS region is located below the tropopause, reducing

Attribution of impacts

MORE & LESS oy S

ozone loss.
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H,O emissions have a relatively small
ozone impact at these altitudes, but they | - =,

= 23 . . .
- =25 are dominant for the climate impact [7]. 15
S
a - Relative O, ‘}
Relative O, impact at 20.4
impact at 20.4 km

km

m H20 = NOx

W A

| Sulfur emissions are the second largest
| overall contributor to the ozone impact.
Considered per unit of emission mass their
sensitivity is up to an order of magnitude
higher than NO,.

m H20 = NOx

Despite making up for approximately 1% of the
emission mass, we find NO, emissions cause more
than half of the global ozone impact. In the SAS region
this share increases to 79%, due to the efficient
stratospheric transport.

MDO and Regulations for Low-boom and
Environmentally Sustainable Supersonic Aviation
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2014-01-01

Impact of NOy emissions Impact of SO, emissions

Emissions of NO,, SO,, and H,O interact
through heterogeneous chemistry. In this
reaction NO, is converted to HNO;,
suppressing ozone loss. This interaction
results in nonlinearities, which we quantify
through cross-sensitivities.

Here we show global ozone loss for 3
scenarios. The bottom right panel shows
changes in ozone impacts from interactions
between NO, and SO,. The magnitude of this
has been multiplied by 50 for visualisation.

o NL= AO5;(NO,,SO,) — (AO3(NO,) + A03(S0,))

180" 120*W 60w 0* 60°E 120°E 180* 180* 120°wW 60*'W 0* 60°E 120°E 180*
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0
403 [DU]

After some time you can see that the interactions between the
NO, and SO, emissions “increase” ozone columns, ozone loss is
reduced because more NO, is converted to HNO;. TU Delft

Sensitivities of atmospheric ozone to supersonic emissions
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Cross-sensitivities characterise how the response to one emission species changes with other emissions.

[Galyr] [Galyr]

[Galyr]
40

0 20 80 0 20 40 60 80 0 20 40 60 80
60 60 r d ¥ , 6 &0 3 h x
| % | % |
50 4, 5 0o % " L5 504 © %D l 5
o = ) 2 =
— 40 5 4 ~ 4018 -4 —40{ S N 4
& b o =2 ) 7 = #
Q = S =, 5 = '
< & 301 38 © 30 -3 5 g 0 r3
= v 9 g ; ) ‘
< 20 - -2 20 - 2 <20 2
10 - 1 10 L1 10 ri1
0 : 0 0 . ; 0 0 y ' +0
0 20 40 60 0 20 a0 60 0 20 40 60
A NOy [%] A NO, [%] QH:0 [%]
[Gglyr] [Ggiyr] Galyr]
0 40 60 80 0 40 60 80 40
- ol 60 -
50 -
s — 40 4
2 2 =
o x 30
(V) § a
< 20
10
0 | Crae BN e mee e =

& NOx [%]

L. A NO, [%)
(preliminary)

If H,O and SO, emissions both increase by 30%, their
interactions increase O, depletion by -0.0716 DU (10%!) in
the SAS region. In the TAC region this would decrease
ozone loss by less than 1% instead!

Sensitivities of atmospheric ozone to supersonic emissions

0.04

0.02

f 0.00

-0.02

-0.04

[bU]

In this figure we show the
magnitude of the 2nd order
sensitivities between NO, SO,, and
H,O emissions.

In the TAC region interactions
through chemistry reduce ozone
loss by accelerated conversion of
NO,. For SAS emissions these
interactions accelerate ozone loss
instead, with a considerably larger
effect.

The large differences in these
interactions between locations may
represent a considerable challenge
for surrogate modelling!

MDO and Regulations for Low-boom and
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The region of supersonic emissions greatly affects their impact on global ozone levels. Over the south
arabian sea we find over double to ozone depletion from supersonic cruise emissions compared to the

transatlantic corridor, primarily due to NO, emissions.

General Ozone response First-order sensitivities

We observe large differences in NO,-SO,-H,0 cross-sensitivities between the studied regions.
Above the atlantic corridor cross-sensitivites dampen ozone depletion, the opposite occurs
above the south-arabian sea.

Chemical cross-sensitivies

NO,-SO,-H,0 may have a considerable effect on the impact of
emissions in some regions, making it important to include them
in surrogate modelling. Before this can be undertaken we first
need to better understand geospatial dependencies of these
interactions.

Read more about the MORE &

LESS project —\
]
TUDelft
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