

LUDWIG-

MAXIMILIANS

JNIVERSITÄT

Data Examples, Quality & Preliminary Analysis

FIG 4: Waveforms for array-derived rotations (a-c) and for BSPF (d-f). (g) shows the cross spectral density for array-derived rotations of BSPF and the inner [1-10Hz] and outer array [0.15-1.2 Hz].

- regional seismicity.
- 12:12:26 UTC).

- densities (see Fig.4g).

- Sources:

www.rotational-seismology.org

Observing and analysing seismicity with a permanent 6C station

Andreas Brotzer¹ | Heiner Igel¹ | Joachim Wassermann¹ | Felix Bernauer¹ | David Sollberger² | Frank Vernon³ | Robert Mellors³

¹ LMU Munich, Germany | ² ETH Zurich, Switzerland | ³ IGPP, SIO, University of San Diego, USA

BSPF - Live Data Online

Trillium 240 seismometer (Nanometrics) sampled at 40 Hz and a blueSeis-3A

The self-noise level of the portable blueSeis-3A sensor is currently at about 10⁻¹⁵ rad²/s²/Hz and poses the main limitation for observations at the 6C station. The focus is on the local and

The example shown is a $M_w4.2$ event near Borrega Springs (California) in about 24 km distance from BSPF on 2022-12-31

Frequency limits for subarrays of the PFO seismic array for arrayderived rotations following Poppeliers & Evans (2015):

• inner (4 stations, aperture~90m): 1.3 Hz < f < 10 Hz (Fig.4a-c) outer (7 stations, aperture \sim 730m): 0.15 Hz < f <1.3 Hz (Fig4d-f)

A complete consistency validation of array-derived rotations versus direct measurements of a portable sensor for all three components is planned with these event data. Good agreement can be seen for both subarrays within the frequency limits using cross spectral

Donner et al. (2017) Comparing Direct Observation of Strain, Rotation, and Displacement with Array Estimates at PFO, California. SRL. doi: doi.org/10.1785/0220160216 Sollberger et al. (2020) Seismological Processing of Six Degree-of-Freedom Ground-Motion Data. Sensors. doi: doi.org/10.3390/s20236904 • Sollberger et al. (2023) Efficient wave type fingerprinting and filtering by six-component polarization analysis. GJI. doi: doi.org/10.1093/gji/ggad071 • Poppeliers & Evans (2015). The effects of measurement uncertainties in seismic-wave gradiometry. BSSA. doi: doi.org/10.1785/0120150043

Andreas Brotzer | LMU | brotzer@geophysik.uni-muenchen.de

High Seismicity