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DATASET AND METHODS

RESULTS AND DISCUSSIONSRATIONALE

GEOLOGICAL SETTING
• The Tainan-Taixinan Basin is located in the eastern segment of the 

northern margin of the SCS and comprises several Cenozoic NE-
trending rift basins². 
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• Free-air satellite from world data (a) 
• Bathymetry data from GEBCO_2022 (15 s grid) (b)
• 87 seismic lines (08 surveys) and 10 ODP/IODP well-logs (b)
•  Sediment thickness from seismic interpretation (c)

The South China Sea (SCS) was formed after a long-lasting Mesozoic 
subduction. From Eocene to Oligocene, this region was subjected to  
wide-rift architecture, and during Miocene, to  post-rift magmatism¹. Its 
NE margin (Tainan-Taixinan segment) is comparatively less constrained 
than the rest of SCS². Key questions are:
• What is the crustal structure of this segment of the SCS? 
• What is the influence of the Mesozoic setting on the present-day 

crustal structure? 
• What are the different rifting phases recorded in this segment? 
• What is the extent of post-rift magmatism? is segment? What is the 

extent of post-rift magmatism? 

• Gravity inversion³ was calculated using a reference Moho depth of 40 
km, an initial crustal thickness of 37.5 km, a critical thinning factor of 
0.7, and a maximum magmatic addition prediction of 7 km. Two break-
up ages were tested: 50 and 33 Ma (early and late Eocene) (d)

• Joint inversion⁴ of Moho depth using gravity and time domain seismic 
reflection data was performed to calculate the lateral variations in 
basement density and seismic velocity in profiles CL01 and Cl02.

• Quantitative assessment of crustal thickness variations and density 
variations together with seismic interpretaitons were used to infer 
crustal domains and their nature.

WHAT’S NEXT?
• To correlate the evolution of 

the NE portion of the SCS 
with both offshore basins 
located north and east and 
onshore units further east, 
in Taiwan.

• To differentiate Mesozoic 
(pre-rift) domains and their 
control on rift inheritance.

• To study the impact of the 
heterogeneity of these 
contrasting domains on the 
evolution of the 
accretionary prism further 
east.

The authors are grateful to Neuralog and Schlumberger for providing the 
Academic Licenses.

• We tested, with the joint inversion method, two Moho picks 
at the top (shallow) and base (deep) of the high reflective 
layer found in the domain of unknown nature. 

• Density variations are considerably denser using the deep 
Moho pick (>2900 kg/m3) than using the shallow Moho pick 
(2850km/m3). 

• One possible interpretation is that the basal reflective layer 
is mafic (magmatic) in origin. Dregdes of volcanic rocks in 
this domain provide evidence for magmatic activity in the 
Mesozoic and Cenozoic.

• We also tested two scenarios (end-members) for the break-
up age in the gravity inversion: (a) 50 Ma (Early Eocene) 
and (b) 33 Ma (Late Eocene). Considering a younger 
breakup age (33 Ma) results in thinner crust than for the 
older Eocene age.

(a) Structural Map of the South 
China Sea

(b) Simplified tectonic
chart of the NE segment of SCS

It is worth noting that the crustal structure of this segment contrast with other segments of the SCS. Five domains were identified, from north to south:
• The proximal domain is characterized by a continental crust usually thicker than ~20 km, likely including thick Mesozoic to Paleozoic sediments and intrusive rocks.
• The necking domain is associated with sharp crustal thinning accommodated by either continental-ward or oceanward dipping faults onset of crustal thinning.
• The hyper-thinned domain, which can reach less than 5 km thick crust, and accomodated the extension by systems of low-angle normal faults.
• A domain of unknown nature (10 to ~15 km thick) that has scarce or absent normal faulting, and also evidence for Mesozoic and Cenozoic post-rift magmatism. Seismic 

data shows a reflective layer at the base of this domain.
• The oceanic domain is characterized by a chaotic/hummocky high-amplitude crust with an average thickness of ~6 km, passively draped by post-Oligocene sediments.

Compilation data 
of average 
velocity-depth 
profiles from 
oceanic plateaus. 
Depth is below 
seafloor⁵.

• We compiled the velocities from OBS stations 
located in the domain of unknown nature 
and available in the literature and then 
compared the created velocity envelope with 
data from oceanic plateaus located worldwide.

• The deeper 
parts tend to 
be slower than 
the other 
sampled 
plateaus.

• This fact might 
be indicative 
of the post-rift 
nature of the 
region.
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