

Former land use and tree age affects nitrate leaching from European forest soils

Caitlin Lewis (University of Reading) Martin Lukac (University of Reading) Elena Vanguelova (Forest Research) Matthew Ascott (BGS)

Nitrogen deposition and European forest ecosystems

The literature

Available online at www.sciencedirect.com

Forest Ecology

and Management

v elsevier com/locate/foreci

N leaching across European forests: Derivation and validation of empirical relationships using data from intensive monitoring plots

Climate: rainfall, temperature

Soil pH and C:N ratios

Tree species

Altitude and slope

Many other studies exist outside of the long-term monitoring datasets and identify other influential variables

Global Change Biology (2002) 8, 1028-1033

Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests

J. A. MACDONALD*†, N. B. DISE†, E. MATZNER‡, M. ARMBRUSTER‡§, P. GUNDERSEN¶ and M. FORSIUS**

Fig. 1 N input in throughfall vs. NO₃⁻ leached (kg N ha⁻¹y⁻¹). Leached NO₃⁻ = 0.46^{*} throughfall N-1.87 (*n* = 181, *P* < 0.05, *r*² = 0.62). Open symbols represent sites where the input of N was dominated by ammonia (> 60%).

Predicting dissolved inorganic nitrogen leaching in European forests using two independent databases *

N.B. Dise^{a,*}, J.J. Rothwell^a, V. Gauci^b, C. van der Salm^c, W. de Vries^c

Fig. 1-Dissolved inorganic nitrogen leached (N-out) vs. dissolved inorganic nitrogen input in throughfall (N-in) for IFEF (A) and Level II (B) sites. Regression line is shown as solid line. Note the different scales on the x-axes.

Our Aims

Determine whether the literature aligns with the findings from the long-term monitoring datasets Investigate the effect of soil type, tree species, former and surrounding land use on the relationship between N-in and Nout

Literature search

Scopus

Clarivate

Web of Science[™]

Species
Fagus sylvatica
Quercus petraea/robur
Betula pendula
Picea sitchensis
Pinus Sylvestris
Picea abies

Other considerations:

• Units

- Nitrate leaching *fluxes* only
- Throughfall nitrate only, not ammonium deposition

Exposures	Outcome	Variables to explain exposure/outcome relationships
Tree species	Relationship between	Organic layer C:N ratio
Soil order	nitrate leaching fluxes and throughfall	Mineral topsoil (0-10cm) C:N ratio
Land use history	nitrate concentrations	Organic layer pH
Proximity to agriculture		Mineral topsoil (0-10cm) pH
Average annual temperature		Soil texture
Average annual precipitation		

Data extraction

Literature included:

65 sites across 16 papers.

Individual studies

Afforestation chronosequences

		_						_				_																		
L C	D E F	G	Н	I J		L		0	P		R	S ·	Г	U V	/ W		X Y	Z	AA	AB		AD	AB		AG	AH	Al	AJ	AK	AL
	Publicati Journal Species			Longitud Country		_	Site.soil. Order		-	Obs_year Plar	-		D p	H_010 pH_1	_	CN_0	010 CN_1030			Silt	Sand	MAT	MAP		.e Foliar.P.		Foliar.N.(Fo	-	_	_
2 J, BASE CAT	1997 Water, ai P.abies			48.2058 France							1903	85 NA		3.7	3.7 NA			.6 Medium	22.		0.1 57		-	250 NA		NA	N			IA
3 J, BASE CAT	1997 Water, ai F.sylvatio				-	-	Podzol Podzo				1848	140 NA		4	4.1 NA			.1 Sandy loa			2.5 65			250 NA		NA	N			
4 Di Nitrogen	2011 Water, ai F.sylvatio									1993-200€ NA	NA		5.7	6.7	6.9 NA	NA	NA		NA	NA	NA			650 NA		NA	N			
5 Di Nitrogen	2011 Water, ai P.abies			47.8417 Austria							1910	83	5.3	6.3	6.6 NA	NA	NA		NA	NA	NA			650 NA		NA	N			
6 H, Ndeposi	2004 Biogeoch P.abies					-					1914	80 NA		3.5 NA	NA		15.5 NA	Clay loan		-				.000 NA		NA	N			A
7 H, N deposi	2004 Biogeoch F.sylvatio										1854	140 NA		3.7 NA	NA		18.5 NA	Sandy loa				67 5		.000 NA		NA	N			A
8 J, The effec	1994 Europear P.abies										1934	58 NA		3.9	3.7 NA		19.1 14.		NA	NA	NA			.300 NA		NA	N			IA
9 J, The effec	1994 Europear F.sylvatio			49.8821 France						1992-1994 NA	NA			4.3	4 NA		14.2 14.	.8	NA	NA	NA			.300 NA		NA	N			
10 A, Depositio	2002 Plant and F.sylvatio						Dystric ca Cambi				1904	90 NA		IA NA	NA	NA	NA		NA	NA	NA			850 NA		NA	N			
11 A, Depositio	2002 Plant and Plabies		11.0833				Dystric ca Cambi				1909	85 NA		IA NA	NA	NA	NA		NA	NA	NA			850 NA		NA	N			
12 an Role of s	2010 Global ct Q.robur/						Coarse-Ic Alfiso		31.1538		1973	31	4.3	4.5 NA		27	13 NA	Sandy loa			14	71 7		825 NA		NA	N			
13 an Role of s	2010 Global ct P.abies		9.61944				Coarse-Ic Alfiso		28.8462		1973	31	4.4	4.5 NA		29	13 NA	Sandy loa			14	71 7		825 NA		NA	N			
14 an Role of s	2010 Global cf F.sylvatio						Coarse-Ic Alfiso		38.8462		1973	31	4.5	4.3 NA		33	12 NA	Sandy loa						825 NA		NA	N			
15 an Role of s	2010 Global ct Q.robur/			55.4231 Denmai		-		8.54369			1973	31	4.6	3.8 NA		24	18 NA	Sandy loa						631 NA		NA	N			
16 an Role of s	2010 Global ct P.abies	Conifer	12.0631	55.4231 Denmai	k Valo, Ze	ea Old grow	Coarse-Ic Alfiso	22.3301	0.38462	2004-2006	1973	31 NA		3.7 NA		25	18 NA	Sandy loa	1	0	19	72 7		631 NA		NA	N	A N	IA N	A
17 an Role of s	2010 Global cf F.sylvatio					-			9.61538		1973	31	4.3	3.8 NA		27	18 NA	Sandy loa	1	כ	19	72 7		631 NA		NA	N			
18 ani Leaching	2005 Plant and Q.robur/	Broadlea	7.41487	52.5457 German	y Grumsm	ni Old growt	h forest Podzo	12.322	1.61	2001-200: NA	NA	NA	N	IA NA	NA	NA	NA		NA	NA	NA	10	.7	727 NA		NA	N	A N	IA N	A
19 aniLeaching	2005 Plant and P.sylvest	Conifer	7.63643	52.353 German	· ·	<u> </u>		42.17	16.224	2001-2005 NA	NA	NA	N	IA NA	NA	NA	NA		NA	NA	NA	10	.3	845 NA		NA	N	A N	IA N	A
20 tie A decade	2011 Environm F.sylvatio	Broadlea	7.41019	47.227 Switzer	a Bettlach	ns Old grow	Rendzic I Leptos	ol 12.0921	2.19388	1999-2007	1841	158 NA		6.5 NA	NA	NA	NA	Clay	5	5	1	43	6 1	149 NA		NA	N	A N	IA N	A
21 tie A decade	2011 Environm F.sylvatio	Broadlea	6.68476	46.577 Switzer	a Lausanr	ne Old grow	Dystric ca Cambi	ol 12.5814	14.848	1999-2007	1851	148 NA		3.9 NA	NA	NA	NA	Sandy loa	1	7	21	62 7	.6	807 NA		NA	N	A N	IA N	A
22 tie A decade	2011 Environm F.sylvatio	Broadlea	9.07481	47.1708 Switzer	a Schanis	, Old grow	Eutric car Cambi	ol 19.5514	20.0664	1999-2007	1871	128 NA		5 NA	NA	NA	NA	Clay loan	4	1	9	50 7	.9	733 NA		NA	N	A N	IA N	A
23 tie A decade	2011 Environm P.abies	Conifer	7.79968	46.7177 Switzer	a Beatent	e Old grow	Podzol Podzo	9.10241	0	1999-2007	1791	208 NA		2.8 NA	NA	NA	NA	Clay	8	7	4	9 4	.6 1	511 NA		NA	N	A N	IA N	iA
24 set Impact of	2012 Atmosph F.sylvatio	Broadlea	3.80417	51.0697 Belgiun	Wijenda	al Arable	Endogley Umbri	ol 50.0028	5.95985	1994-2010	1935	59	2.7	2.7 NA		22	21 1	.6	NA	NA	NA		1	867 NA		NA	N	A N	A N	IA Ì
	Review_Fina	(+													1								_						
Ready 🕅	Accessibility: Unava	ilable																					▦	E	巴		-		- +	54%

N leaching positively related to throughfall nitrate

There was a significant (p < 0.05) positive relationship between nitrate leaching and throughfall nitrate (y = 0.35x+0.06).

1: Throughfall nitrate and tree species predict nitrate leaching...

Stepwise AIC: R² = 0.11, p = 0.04

Difference in gradients not statistically significant (Figure 2, ANCOVA, F = 0.547, p > 0.05).

Even representation of broadleaf and conifers (n= 34 and 30 respectively)

2. ...until sites on arable land are excluded

Former arable soils planted with broadleaves displayed unexpected relationship with throughfall N.

Therefore removed datapoints on arable soils and reran the stepwise AIC.

Throughfall, former land use and soil order were then the best predictors : R²=0.46, p = 0.06

3: The behaviour of arable sites afforested with broadleaves may be related to differences in the nutrient status of different soils

There was a significant association between soil orders and different former land uses (Chi-squared, X²=42.8, p < 0.001).

Former arable sites afforested with broadleaved species were typically found on alfisols.

Alfisols are nutrient rich, and arable soils can have high P content.

Broadleaf trees have a higher demand for P than conifers, and when lots of nutrients are available broadleaves grow well and can retain more N despite high inputs.

4: Soil order and former land use affected soil C:N ratios

Soil order affected mineral top soil C:N ratios and pH. Soil order affected organic soil C:N ratio but not pH.

Former land use affected organic layer C:N ratios but not mineral soil C:N ratios. Former land use did not affect soil pH.

5: Former land use effects were linked with tree age effects

Trees on afforested arable land were generally younger than those planted on other former land uses. Nitrate leaching increased with age until 50-80 years, then decreased.

Getting further evidence

Further data on N-input vs N-output on secondary rotations, formerly coppiced land, and broadleaves planted on heathland/grassland

ICP Level II dataset

Data on available nutrients in soil solution e.g. P, to look for relationships with how this affects the N-input vs N-output relationship

More data to assess interactions between variables

Other PhD work

Conversion of coniferous forest to broadleaved forest- effect on nitrate leaching, nitrification, soil C:N ratios

What does all of this mean practically?

Broadleaf trees planted on arable land may have unexpected responses in Nleaching to elevated deposition

What does all of this mean practically?

Broadleaf trees planted on arable land may have unexpected responses in Nleaching to elevated deposition

Tree harvesting and nutrient management regimes have long-term implications for soil N content

What does all of this mean practically?

Broadleaf trees planted on arable land may have unexpected responses in Nleaching to elevated deposition

Tree harvesting and nutrient management regimes have long-term implications for soil N content

Consider the timescale over which afforestation can provide benefits to water quality