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Governing equations of numerical simulation

We consider an electrically conducting fluid between two concentric, corotating spherical surfaces that
correspond to the inner core boundary (ICB) and the core-mantle boundary (CMB).The ratio of inner

to outer radius r;/r, is chosen to be 0.35. In the Boussinesq approximation, the non-dimensional MHD
equations for the velocity, magnetic field and temperature are given by,
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Scaling and dimensionless numbers are given in the next slide.

2/4



Scaling and Dimensionless numbers

Quantity
Lengths
Velocity (u)

Time

Magnetic field (B)  (202pun)/?

here,

Scaling

Shell thickness (L)
n/L

L2/n

Rotation rate
Magnetic permeability

Gravitational acceleration

xm T o9

Thermal diffusivity

Parameter

Pr (Prandtl number)

Pm (Magnetic Prandtl number)
E (Ekman number)

A (Elsasser)

Ra (Modified Rayleigh number)
Ray (local Rayleigh number)

q (Roberts number)

Fluid mean density
Magnetic diffusivity
Kinematic viscosity
Coefficient of thermal expansion

Definition

vV/K

v/n

v/2021?
Bo/v/202pp0m
galATL?/20k
galAT6%/202k
Pm/Pr

O X I
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Fundamental frequencies and MAC waves

The dimensional frequencies w3;, —w3 and w? in the dynamo are given by

k)2 K+ 13 k)2
i (BK? a ﬂ<z+¢>7 IR

up ) A= 8B k2 k2 ) (5)

Where, 3 is negative for unstable stratification.
and scaling the frequencies by 17/L2, we obtain in dimensionless units,

Wiy = —(B- k)2, WA =

Pm*Ra [ k2 + k3 2 Pm’ K
) wce = 7o (6)
PrE k2 E?2 k2
where ks, ko and k. are the radial, azimuthal and axial wavenumbers in cylindrical coordinates (s, ¢, z),
ky = m/s, where m is the spherical harmonic degree, and kK = ks2 + ké + kf.

Here, w3, w3, w? represent the squares of the frequencies of Alfven, buoyancy and linear inertial waves
respectively.

By solving the linearized form of the governing equations, we obtain a dispersion relation:
(W? — wiy — W) (W? — why) —wew® =0 @)
The dispersion relation yields two sets of roots, which correspond to the fast and slow MAC waves.
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