The dipole–multipole transition in planetary dynamos (Supplementary Material)

Debarshi Majumder, Binod Sreenivasan and Gaurav Maurya

Centre for Earth Sciences, Indian Institute of Science, Bangalore, India

Governing equations of numerical simulation

We consider an electrically conducting fluid between two concentric, corotating spherical surfaces that correspond to the inner core boundary (ICB) and the core-mantle boundary (CMB). The ratio of inner to outer radius r_i/r_o is chosen to be 0.35. In the Boussinesq approximation, the non-dimensional MHD equations for the velocity, magnetic field and temperature are given by,

$$E Pm^{-1} \left[\frac{\partial \boldsymbol{u}}{\partial t} + (\nabla \times \boldsymbol{u}) \times \boldsymbol{u} \right] + \hat{\boldsymbol{z}} \times \boldsymbol{u} = -\nabla p^* + RaqT\boldsymbol{r} + (\nabla \times \boldsymbol{B}) \times \boldsymbol{B} + E\nabla^2 \boldsymbol{u}$$
(1)

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) + \nabla^2 \boldsymbol{B}$$
⁽²⁾

$$\frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \nabla T = q \nabla^2 T \tag{3}$$

$$\nabla . \boldsymbol{u} = \nabla . \boldsymbol{B} = 0 \tag{4}$$

Scaling and dimensionless numbers are given in the next slide.

Scaling and Dimensionless numbers

Quantity	Scaling		Parameter	Definition
Lengths	Shell thickness (<i>I</i>)	Pr (Prandtl number)	$ u/\kappa$
Velocity (u)	η/L		<i>Pm</i> (Magnetic Prandtl number)	$ u/\eta$
Time	L^2/η		<i>E</i> (Ekman number)	$ u/2\Omega L^2$
Magnetic field (<i>E</i>	3) $(2\Omega ho\mu\eta)^{1/2}$		Λ (Elsasser)	$B_0/\sqrt{2\Omega\mu ho\eta}$
			<i>Ra</i> (Modified Rayleigh number)	$g \alpha \Delta T L^2 / 2 \Omega \kappa$
			${\it Ra}_\ell$ (local Rayleigh number)	$g \alpha \Delta T \delta^2 / 2 \Omega \kappa$
			q (Roberts number)	Pm/Pr
here,				
Rotation rate		Ω	Fluid mean density	ho
Magnetic permeability		μ	Magnetic diffusivity	η
Gravitational acceleration		g	Kinematic viscosity	ν
Thermal diffusivity κ		κ	Coefficient of thermal expansion	lpha

Fundamental frequencies and MAC waves

The dimensional frequencies $\omega_{\rm M}^2,\,-\omega_{\rm A}^2$ and $\omega_{\rm C}^2$ in the dynamo are given by

$$\omega_M^2 = \frac{(\boldsymbol{B} \cdot \boldsymbol{k})^2}{\mu \rho}, \quad \omega_A^2 = g \alpha \beta \left(\frac{k_z^2 + k_\phi^2}{k^2}\right), \quad \omega_C^2 = \frac{4(\boldsymbol{\Omega} \cdot \boldsymbol{k})^2}{k^2}, \tag{5}$$

Where, β is negative for unstable stratification.

and scaling the frequencies by η/L^2 , we obtain in dimensionless units,

$$\omega_M^2 = \frac{Pm}{E} (\boldsymbol{B} \cdot \boldsymbol{k})^2, \quad \omega_A^2 = \frac{Pm^2Ra}{PrE} \left(\frac{k_z^2 + k_\phi^2}{k^2}\right), \quad \omega_C^2 = \frac{Pm^2}{E^2}\frac{k_z^2}{k^2}, \tag{6}$$

where k_s , k_{ϕ} and k_z are the radial, azimuthal and axial wavenumbers in cylindrical coordinates (s, ϕ, z) , $k_{\phi} = m/s$, where m is the spherical harmonic degree, and $k^2 = k_s^2 + k_{\phi}^2 + k_z^2$. Here, ω_M^2 , ω_A^2 , ω_C^2 represent the squares of the frequencies of Alfvèn, buoyancy and linear inertial waves respectively.

By solving the linearized form of the governing equations, we obtain a dispersion relation:

$$(\omega^2 - \omega_M^2 - \omega_A^2)(\omega^2 - \omega_M^2) - \omega_C^2 \omega^2 = 0$$
(7)

The dispersion relation yields two sets of roots, which correspond to the fast and slow MAC waves.