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• Many ocean models predict oxygen loss as oceans
continue to warm, but the magnitude of this loss varies
widely across models1

• Intense air-sea gas exchange and wintertime deep
convection in the subpolar North Atlantic (SPNA) are
critical to the ocean oxygen inventory2,3

• BGC-Argo floats and GLODAP hydrography offer
expanding biogeochemical insight for ocean models

• We use a data-constrained physical state estimate4
coupled to the BLING biogeochemical model5 (ASTE-BGC)
to reconstruct the time-evolving 3-D ocean state

• We apply a Green’s functions approach6 (Table 1) to
constrain ASTE-BGC to in-situ biogeochemical data over
2002–2017 (Fig. 1) and reduce model-data misfit (Fig. 3)

• We evaluate the optimized model simulation against
independent data constraints (Fig. 4)
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• The Green’s functions-based optimization is underway and
will next target BGC initial conditions to further minimize
model-data misfit

• Model-data misfit was most effectively minimized for the
BGC-Argo O2 dataset (RMSEv1-v0 = +17%) (Fig. 2)

• The optimized ASTE-BGC model will next be used to
construct SPNA O2 budgets to examine the recent
interannual variability of air-sea gas exchange, transport,
mixing, and biological production

Figure 1. Spatial extent of the BGC-
Argo float (N~107,000) & GLODAP
cruise (N~168,000) data constraints.

1. Green’s functions optimization description

3. Evaluating the optimized model (v1) and the baseline model (v0) in 
horizontal (latitude/longitude) and vertical (depth) space

2. BGC-Argo (O2 & NO3) and GLODAP (O2, NO3, PO4, DIC & Alk) 
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Green’s functions perturbation experiments Optimized 
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s Phytoplankton growth rate (P!") 1.70 x 10-5 1.53 x 10-5

(-10%) 2.69 x 10-5

Phytoplankton mortality rate (λ!) 2.20 x 10-6 2.42 x 10-6

(+10%) 4.66 x 10-6

Fraction of small phytoplankton 
biomass converted to detritus (ϕ#)

0.18 0.198
(+10%) 0.316

Fraction of large phytoplankton 
biomass converted to detritus (ϕ$) 1 0.9

(-10%) 0.683

Nitrate uptake half-saturation 
constant (kNO3)

2.05 x 10-3 1.84 x 10-3
(-10%) 0.403

Table 1. Baseline ASTE-BGC model configuration, five perturbation (±10%) experiments to BLING
biogeochemical parameters, and the Green’s functions-derived solution of optimal parameter values

Over 275,000 GLODAPv2 and BGC-
Argo observations were used to 

Figure 3. For each observational dataset, [left] all model-data pairs for the baseline model (v0, blue) and
optimized model (v1, orange) plotted on a 1:1 axis and [right] the 3-D-averaged vertical profile of all
baseline model (blue line), optimized model (orange line), and observations (dashed black line) data.
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Figure 2. Difference in root mean square error (RMSE), for
the 3-D-averaged vertical profile, between observational
datasets and the baseline model (v0) & optimized model (v1).

Figure 4. (a) Difference in mean climatological April surface chlorophyll (Chl-a) between
the optimized ASTE-BGC model and the baseline ASTE-BGC model (2002–2017),
where light green indicates the optimization’s largest minimization of surface Chl-a; (b)
2-D averaged monthly climatological surface Chl-a of the baseline model (blue),
optimized model (orange), and SeaWiFS observations within Box 1, the region of
highest productivity in the Labrador Sea (60–66ºN, 50–57ºW); (c) the same 2-D-
averaged monthly climatological surface Chl-a within Box 2 (56–58ºN, 51–53ºW).
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