A surrogate model to investigate the geothermal potential with variable groundwater flow velocity
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Introduction

Alluvial aquifers have a great
potential for shallow geothermal
installations due to the thermal
characteristics of water-saturated
porous media.

Hence, a new large-scale solution to
estimate the geothermal potential

covering a great \variability of
groundwater flow regimes s
presented:

- Methodology

A numerical twin of the ILS/ICS method

AT(r,t) = % * G(Fo,p)

AxAT(r,t)
, G(Fo,p) =
Integral equation to derive the T° perturbation around a q
cylindrical heat source as a function of the Fourier number ' Parameters

Sharing is
encouraged

Derivation of G-functions for groundwater flow regimes

A machine learning regression-based surrogate model

5670 combinations of input parameters (V,, n and S)
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Model results

Thermal Exchange Potential (\WW/mK)
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Darcy Velocity
Model Type RMSE (V) RMSE (T) R? (V) R?(T)

ANN 2.0E-03 2.0E-03 1.00  1.00 ..
0

Decision Tree 3.3E-02 1.5E-02 1.00 1.00 Training set 2> 70%
SVM 1.3E-01 1.3E-01 0.99 0.99 V = validation (15%)
Kernel 1.9€-01 3.9E-01 0.98 0.93 _ o
Linear Regression 1.2E+00 1.3E+00 0.30 0.13 T =test set (154)
Stepwise Linear Regression 1.4E+00 1.3E+00 0.10 0.16

Conclusions

__ 5.0

A new large-scale solution to estimate the =é 45

low temperature geothermal potential E 4.0

covering a great variability of groundwater < 35

flow regimes was presented. The model was S 3.0

tested against known approaches such as § 2.5

the ASHRAE method for static groundwater E 2.0 -

in unsaturated and saturated conditions = 2.0 25 3.0 3.5 4.0 45 5.0

showing perfect reproducibility. ASHRAE Model (W/mK)
Going beyond the conductive solution and including the effects of thermal transport
by groundwater a significant increase of the geothermal potential was predicted by
means of a machine learning-based surrogate model as a function of the Darcy
velocity. Considering the parameters investigated in this study, the thermal potential
was expected to increase from 10 to 50 times for groundwater velocities higher
than 100 m/y.
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Adv. / Cond.

m/s 1E-11 1E-10 1E-9 1E-8 1E-7 1E-6 1E-5

I LY ror T rorrrrr LY T ' T
0.001  0.01 0.1 1 10 100 1000

m/y
Darcy Velocity
PRO CONS
 Physically based (energy conservation) e lack of field scale validation

(laboratory experiment under design)

* Neglect interactions for multiple BHE
arrays (implementable)

* Heat conduction + advection

* Fast method - large scale solution

* Scalable for any reference depth

* Range of hydrogeological parameters
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