
What can we learn about the Amazon water balance from 
tropospheric deuterium measurements?

expect a linear relationship between δD_004 and ET-P and (2)
quantify uncertainties in our method of using regressions of
TWS/discharge and AIRS δD_004 at river-basin scales to estimate
ET-P across the Amazon. Figure 2b shows ET-P versus δD_004 in
iCAM for the same regions shown in Fig. 2a. As with the
observed relationships between AIRS δD_004 and TWS/dis-
charge, the modeled relationships are linear (correlation coeffi-
cients of 0.84 or higher) for the wet Amazon. However, observed
ET-P is largely negative throughout the year over the wet tropics
(i.e., in river basins close to the Atlantic and in northwestern
Amazon), whereas iCAM has ET-P being positive for ~1/3 of the
year. Because of these large differences, we cannot use iCAM as a

way to calibrate the δD_004 proxy. Instead, we use the iCAM
model to evalute uncertainties in the proxy and whether seasonal
changes in dynamics and moisture sources change the ET-P and
δD_004 relationship. We quantify this uncertainty as the root-
mean square (RMS) difference between the iCAM ET-P simula-
tion and the ET-P derived from the ET-P and δD_004 relation-
ships from iCAM (i.e., the residual standard deviation of the
regressions shown in Fig. 2b). Because the uncertainty in the
AIRS deuterium data is relatively small for monthly averages (~4
per mil)30, the primary source of scatter in Fig. 2b is likely the
variable sources of ET and precipitation or the isotopic physics
used in iCAM. However, other processes not well modeled by

Fig. 1 The diagram of water vapor and δD (δD_004) dynamics. a The processes influencing δD_004 variability, shown on a plot of water vapor volume
mixing ratio (y-axis) versus δD (x-axis). For a constant water vapor volume mixing ratio (4mmol mol−1, flat gray line labeled “Reference VMR”), variations
in the hydrogen isotope ratio (δD_004, shown in the Figure as δD004) represent the shifting importance of precipitation vs. evapotranspiration (ET-P). The
precise scaling of δD_004 to ET-P will be modified by the efficiency of rainout (i.e., the efficiency with which cloud condensate is converted to rain) and by
the source of moisture to the atmosphere. For example, the two-sided black arrow shows the expected range of δD_004 if oceanic evaporation is the sole
source of moisture to the atmosphere (blue line) and condensate formed during convection is immediately removed from the atmosphere by precipitation
(red line). The intersection of the blue and red lines with the “Reference VMR” line explicitly shows the expected δD_004 values if P= 0 or ET= 0,
respectively. As the contribution of transpiration to atmospheric moistening increases (green line), the δD_004 range will extend to the right, causing the
expected δD_004 value to be higher when P= 0. Contrastingly, as either rain evaporation (purple dashed line) or remote moisture convergence (orange
line) becomes important, the δD_004 range will extend to lower isotope ratios, causing the expected δD_004 value to be lower when ET= 0. Decreasing
the efficiency with which condensate forms precipitation (pink dotted line) will, in comparison, increase the expected δD_004 value when ET= 0, limiting
the expected δD_004 range for a given set of ET-P states. b The schematic illustrates the key processes in (a).

Fig. 2 The regressions of ET-P on δD_004 from both observations and iCAM. a represents the regressions of TWS/discharge on AIRS δD_004 and b
represents the regressions of ET-P on δD_004 from iCAM during 2013–2015. Here, we use observations and iCAM output at a monthly time scale. Basins
close to the Atlantic are river basins 1, 3, 10, and 12 from Fig. 3b; basins in the Northwest are basins 5, 8, 9,13, and 14; basins in the Southeast are basins 2,
4, 6, 7, and 11. For each region, we calculate the area-weighted average of ET-P from TWS/discharge, AIRS δD_004, and ET-P and δD_004 from iCAM for
all months during 2003–2015. Here, the region comprised of basins close to the Atlantic has a higher slope than the other regions, according to both the
observations and iCAM, indicating a different moisture source.
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Satellite based (AIRS) tropospheric observations of the HDO/H2O ratio are sensitive to the net balance of evaporation and 
condensation plus smaller isotopic effects.

Normalizing this tropospheric value to a specified water amount representative of the total column water creates a proxy that
covaries with ET - P

Processes in Figure (b) map to 
mixing and condensation models 
in Figure (a)
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iCAM could also affect the scatter; these include variations in
cloud microphysical processes and changes in the depth of con-
vection resulting in variations in moisture flux convergence
(Fig. 1). All these processes are discussed in the “Methods” and
are shown to have a negligible impact on the precision of the
deuterium-based ET-P estimates from AIRS. The scatter shown
in Fig. 2b represents the uncertainty on the seasonal variability of
the δD_004-based ET-P estimates. The overall accuracy is
bounded by the TWS/discharge measurements as discussed next.

Accuracy of ET-P Estimates. We estimate the accuracy of the ET-
P estimates based on the AIRS δD_004 data as the RMS error in
the fit between the monthly based TWS/discharge versus AIRS
δD_004 estimates of ET-P and TWS/discharge suggested ET-P. We
use TWS/discharge for this purpose because GRACE TWS is
precision limited at river-basin scales and its uncertainties have
been quantified in the literature10. The accuracy is shown in
Table 1 for five groups of river basins described in the “Methods”.
We assess the accuracy through comparisons with different ET-P
esimates derived from different ET and precipitation remote sen-
sing and reanalysis products (“Methods”; Table S2). Results from
Group 1, composed of river basins 3, 10, and 12 (which are shown
in Fig. 3b and named in Table S1), are discussed as an example,
because these three basins do not have any missing values for the
river discharge measurements during 2003–2015. We find that the
RMS errors in the fit between the ET-P estimates derived from

different moisture flux products and AIRS δD_004 are generally
larger but within a factor of two of the RMS errors in the fit derived
from TWS/discharge and AIRS δD_004 (Table S2). This suggests
that our choice of using TWS/discharge data to calibrate the AIRS
δD_004 proxy and our estimate of its accuracy are reasonable.

Seasonality of ET-P based on δD_004 measurements. Figure 3a
shows the monthly average AIRS δD_004-based ET-P estimates
from Group 1, which is composed of river basins 3, 10, and 12
(Fig. 3b and Table S1). We compare these estimates to (1) ET-P
from TWS/discharge, (2) eight other ET-P estimates calculated
from the same moisture flux products used for assessing accuracy
in Table S2, (3) an ET-P estimate using the regression coefficients
from the TWS/discharge–δD_004 comparison, and (4) a similar
ET-P estimates using AIRS δD_004 versus the mean of the eight
other ET-P calculations from Table S2. The pink shading
describes the uncertainty in the deuterium-based ET-P variability;
as discussed earlier, this uncertainty is calculated using the iCAM
simulations. Across all five groups of river basins (defined in the
“Methods”), the uncertainties range from ~32 to 41mm month−1

(Table 2). We find that the seasonality of the deuterium-based
ET-P estimates agrees best with the ET-P obtained from TWS/
discharge; however, noticeable differences are seen in the early
and late part of the wet season (December and May). The com-
parisons demonstrate that the deuterium-based ET-P estimates
can resolve monthly variations in ET-P26–28.

Table 1 The regression coefficient and standard error of the regression coefficient, intercept, correlation coefficient, and the
root-mean square (RMS) error in the fit (mm month−1) between ET-P and δD_004 in the 5 river basin groups: Group 1 (basins 3,
10 and 12), Group 2 (basins 1, 13, and 14), Group 3 (basins 5, 8, and 9), Group 4 (basins 4, 6, and 11), and Group 5 (basins 2
and 7).

Group number Regression coefficient ± standard error of the regression coefficient Intercept Correlation coefficient Error in the fit (mm month−1)
1 2.62 ± 0.13 353.60 ± 23.06 0.85 43.11
2 1.66 ± 0.09 172.67 ± 17.60 0.84 35.86
3 1.91 ± 0.12 239.62 ± 21.86 0.82 54.86
4 1.91 ± 0.12 258.93 ± 19.99 0.80 52.89
5 2.86 ± 0.20 383.40 ± 32.08 0.78 77.85

The calculations are based on ET-P estimated with GRACE TWS and river discharge (TWS/discharge; mm month−1) and δD_004 (per mil) from AIRS during 2003–2015.

Fig. 3 The seasonality of evapotranspiration minus precipitation (ET-P) in one of the Amazon sub-basin groups and the Amazon basin distribution.
a The seasonality of ET-P is from different ET and P data sources, TWS/discharge, and ET-P estimates based on AIRS δD_004 for the geographic area
composed of river basins 3, 10, and 12 (Group 1; “Methods”) during 2003–2015. Panel b shows the river basin distribution map for the Amazon. In a, we
use area-weighted averaging. We use two ET sources; one is from PT-JPL ET, the other is the latent heat flux of ERA5. We also use four precipitation
products: TRMM, GPCP, PERSIANN, and CRU. Other monthly data products include terrestrial water storage (TWS) from GRACE, river discharge from
Amazon river gauge measurements, and ET-P derived from AIRS δD_004. “ET-P Estimation” is the ET-P estimate from AIRS δD_004 based on the
regression against TWS/discharge. “ET-P Estimation with Mean” is an alternative estimate of ET-P from AIRS δD_004 based on regressing the isotopic
data against the average ET-P derived from the eight combinations of remote-sensing and reanalysis moist flux products. The pink shading represents the
suggested error in the fit between monthly ET-P and δD_004 from iCAM.
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Deuterium water balance proxy co-varies with surface water balance in the North.
However, deuterium water balance proxy depends on local and remote moisture in the South 

We can use measurements of gravity (NASA GRACE) and river discharge to calibrate the slope and offset 
(but not variability) of this deuterium proxy



Is Water Balance in the Amazon changing during the 21rst Century?

TRMM / GPM

21rst century changes in Water balance are smaller than observed precipitation changes indicating 
substantial role of ET in controlling Amazon water balance during the 21rst century

 Change in P - ET (2012-2016) - (2003-2011)
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4

Humphrey et al. Nature 2021 demonstrates that feedbacks between soil moisture and Vapor Pressure 
Deficit (VPD) are a dominant driver of this effect, primarily through VPD impact on photosynthesis

Models predict a reduction in Tropical NPP for future climate scenarios because 
increasing temperature increases soil moisture drying by increasing Evapotranspiration 
and reducing Precipitation or water balance or E – P.   (Fung et al. PNAS 2005)

Correlation between change in temperature 
and soil moisture

Correlation between change in temperature 
and NPP
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Fig. 1. (A) Maximum positive correlation between Oceanic Niño Index
(ONI) and fire season severity (FSS) derived from 2001–2009 MODIS active
fire data. (B) Maximum positive correlation between Atlantic Multidecadal
Oscillation index (AMO) and FSS for the same period. (C) Mean FSS (in
terms of detectable fires per million hectares per year) observed by MODIS
during 2001–2009. (D) Correlation between predicted FSS from the em-
pirical model (Eq. 1) and observed FSS derived from MODIS. ONI is a 3-month
mean SST anomaly in the Niño 3.4 region (5°N to 5°S, 120° to 170°W) of
the Pacific (27). AMO represents a similar 3-month mean for the North

Atlantic (0° to 70°N) (28). The months at which ONI or AMO had largest
positive correlation with FSS are provided for each 5° × 5° grid cell in (A)
and (B). Also shown in the parentheses are the associated lead times (in
months) relative to the peak fire month. The months (and the associated
lead times) at which the empirical model can be used for FSS prediction are
shown in (D). The spatial distribution of active fires across the Amazon
shown in (C) is closely related to patterns of land use, including rates of
forest clearing, the distribution of protected areas, and transportation cor-
ridors (2, 6, 8, 13).
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ENSO related changes to Atlantic sea surface temperatures modulate Amazon rainfall which in turn affects dry season fire 
severity 

What are the factors modulating Evapotranspiration and Precipitation in the Amazon?

Chen et al. (Science 2011) demonstrates a strong relationship between 
rainy season Atlantic ocean SST and dry season fire severity.



The Amazon (like most tropical forests) have 
strong feedbacks between ET and P
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before raining out again, with a median of ~600 km (Fig. 2b). This 
short distance—relative to the size of the Amazon—implies that 
a large part of Amazonian transpiration rains out over the basin 
itself: 46% of transpiration directly rains out over the Amazon (the 
same order of magnitude as a previous estimate based on a different 
methodological approach34). We find that if cascading recycling of 
that water is included, this ratio reaches 77%. The large transpira-
tion fluxes in the Amazon (Fig. 2a) enhance rainfall over vast areas 
outside the basin as well (Fig. 2c).

We find temporal variations in the effect of trees on rainfall. The 
seasonal variability in tree-transpired rainfall is characterized by a 
peak during September to November, when large parts of the Amazon 
are at the end of the dry season, with up to 70% of regional rainfall 

being a result of tree transpiration (Fig. 3a‒f and Supplementary 
Fig. 7; see Supplementary Figs. 5 and 6 for Amazon-wide monthly 
recycling). This large contribution of recycled moisture during the 
dry season means that seasonal droughts are moderated by forests. 
Forests also buffer against inter-annual droughts, as reflected by the 
negative correlation between the TRR and the amount of moisture 
that enters the Amazon basin (Fig. 1b). Indeed, we find the highest 
TRR (27%) for 2005 (Fig. 1b and Supplementary Figs. 5 and 8) during 
a severe drought35. This increased contribution of tree transpiration 
to rainfall could explain a previous report of relatively high moisture 
recycling in 200536. Curiously, the contribution of tree transpira-
tion to rainfall during the 2010 drought was lower, when the TRR 
remained around the multi-year average level (21%; Fig. 1b). This 

30
49%51%

Direct transpiration recycling:
Re-evaporation cycle = 0

Cascading transpiration recycling:
Re-evaporation cycle ≥ 1

Re-evaporation of
transpired water

Tree
transpiration

a bTranspiration recycling ratio: 20% of rainfall

2005

2010

T
ra

ns
pi

ra
tio

n 
re

cy
cl

in
g 

ra
tio

 (
%

)

25

20

15

10
1,000 1,100 1,200 1,300 1,400 1,500

Annual rainfall of oceanic origin (mm yr–1)

Fig. 1 | Transpiration recycling in the Amazon basin. a, On average, 20% of all rainfall in the Amazon has been transpired by trees at least once (the 
transpiration recycling ratio, TRR). About half of this transpiration recycling (51% of transpiration recycling) occurs after one transpiration–rainfall cycle 
(re-evapotranspiration cycle!= !0). The remainder (49% of transpiration recycling) occurs after multiple (1− 7) re-evapotranspiration cycles of transpired 
water (cascading transpiration recycling). b, Plot of the TRR in the Amazon for each year in the period 2003− 2014 against the spatially averaged rainfall 
that had last evaporated from the ocean, O. A linear regression was fit, with TRR!= !45!–!0.023!O (r2!= !0.66). The years 2005 and 2010 are labelled because 
they brought drought across vast areas of the Amazon (see also Supplementary Figs. 8 and 9). See Supplementary Fig. 6 for TRRs against monthly rainfall 
of oceanic origin.
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Fig. 2 | From transpiration to rainfall.  a, Mean annual transpiration by trees that precipitates over land. b, Median geographic distance of transpired water 
before precipitating again over land. Distances are given at the locations of transpiration. c, Fraction of mean annual rainfall that has been transpired by 
trees in the Amazon basin. The Amazon basin is shown by a black outline.
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could be explained by differences in incoming oceanic moisture. 
Even though large areas were affected by drought in 201037, we find 
that the total amount of oceanic moisture entering the Amazon was 
average (Fig. 1b and Supplementary Fig. 9). This average moisture 
inflow in 2010 explains its lower TRR compared with the drought of 
2005, when rainfall of oceanic origin was, on average, 100 mm yr−1 
lower than in 2010 (Fig. 1). The consistent buffering of droughts 
by transpiration means that the forest-rainfall cascades are at their 
strongest during dry periods. This is particularly relevant because 
both seasonal23,38 and inter-annual rainfall variability17 affect forest 
resilience in the wet tropics.

Our analysis shows that the south-western Amazon is a pro-
nounced sink area, not just for continental moisture recycling14,20,39 
but for tree-transpired moisture in particular. This region was not 
only driest during 2003‒2014 (Supplementary Fig. 3), but is also 
most dependent on locally transpired water (Fig. 3g). These results 
already suggest that land-cover changes in the south-western 
Amazon would considerably increase its vulnerability to drought, 
but several additional lines of evidence also indicate that forests 
in this region are sensitive. It has been shown that in the south-
ern Amazon, the onset of the wet season depends on the presence 
of the forest40. In the western Amazon, the regional-scale level of 
photosynthetic activity requires multiple years to recover from 
extreme drought41. This is also a region where extensive floodplain 
forests are particularly vulnerable to fire, because they regener-
ate slowly or even remain under arrested succession once burnt42. 
Because fire occurrence in the Amazon increases exponentially 
with dry-season rainfall deficit43, the drought-buffering capacity 
of the forest could greatly reduce the risk of such fires. To explore 
this effect, we calculated how the mean annual water deficit (see 
Methods) would change in the absence of forest-rainfall cascades. 
We find that the mean annual water deficit in the south-western 
Amazon would increase from 196 to 380 mm, suggesting that for-
est-rainfall cascades are indeed a major suppressor of forest fires 
in the south-western Amazon and may thus sustain a large propor-
tion of its tree cover3,44.

An issue of particular concern is the possibility that parts of the 
Amazon forest may cross a tipping point to a savannah state18,19,44–46. 
Empirical relationships between tree cover and rainfall22,38 indicate 
that in South America, forest and savannah can be alternative stable 

states below 2,000 mm mean annual rainfall (Fig. 4). Independent 
evidence also indicates that below 2,000 mm rainfall, tropical for-
ests may not maintain year-round photosynthesis47 and may recover 
more slowly from perturbations when rainfall decreases25. This 
makes these forests vulnerable to die back, after which a fire-main-
tained savannah state may establish38. The strong dependence of 
tropical forest resilience to rainfall has also been reported for South 
American secondary forests48. We therefore used mean annual rain-
fall to quantify forest resilience following published methods22 and 
find that resilience of the south-western Amazon forest strongly 
depends on forest-rainfall cascades (Fig. 4d,g; see also refs 44,49). 
Without them, the rainfall regime would make savannah a much 
more resilient ecosystem type than forest. As Fig. 3g showed, much 
of the tree-induced rainfall in the south-western Amazon has been 
transpired nearby. This implies that forest disturbances that affect 
transpiration feed back to forests in the same region, further ampli-
fying these disturbances. Thus, it is important to understand how 
climate change and deforestation alter transpiration and wind pat-
terns50, as consequences for the south-western Amazon may be 
large. Forests in the northern part of the basin (for example, the 
north-western Amazon and Guyana Shield) are also relatively 
dependent on forest-rainfall cascades and are at risk of tipping to a 
savannah state, but this dependency is spatially less extensive than 
in the south-west (Fig. 4g).

Having determined how rainfall changes would affect forest 
resilience in each 0.25° cell, we weighted all transpiration fluxes by 
their effect on resilience across the Amazon (Methods). We then 
aggregated these positive effects of transpiration on resilience and 
ranked all 0.25° cells accordingly. In line with the results from a 
recent modelling study49, we found a marked north–south gradient 
in the contribution of tree transpiration to forest resilience (Fig. 5). 
This can be explained by the relatively large prevalence of dry con-
ditions (low mean annual rainfall and a longer dry season between 
June and September) towards the south (Supplementary Fig. 3), 
which increases tree transpiration (Fig. 2a) and the contribution of 
transpired water to rainfall (Supplementary Fig. 7), and decreases 
forest resilience22. Furthermore, in the dry season the dominant 
wind pattern in the southern Amazon is westward rather than 
southward15, enhancing transpired moisture retention in the basin 
compared with the wet season (December to March).
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Staal et al. (Nat Clim Change, 2018) uses simple atmospheric  and surface models, with Lagrangian back trajectories to show:

Transpiration contributes up to 30 to 50% to rainfall in Amazon with larger relative contributions during years with less rainfall

NW GS EA

SW CA SA



Complex, confounding mechanisms affect 
Amazon water balance and its changes
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Soil Moisture: Stomata closes if soil moisture becomes 
too dry . Less soil moisture means less water supply for 
evapotranspiration which in turn increases VPD 
(Humphrey et al. Nature 2021)

Dry air (i.e. vapor pressure deficit) can either
1) Increase evapotranspiration through demand or 2) 
force stomata to close, decreasing 
evapotranspiration (Gentine et al. 2019)

Increasing CO2 can also increase water use efficiency (van der 
Sleen Nat Geo 2015, Walker et al. New Phyt 2020)

àAtmospheric CO2 has increased by ~10% in last 20 years. 
Has water use efficiency also increased by 10% (decreasing 
transpiration)?  Or have increased temperatures and drying 
increased transpiration?



These two regional daily rainfall datasets are based on ∼300–450
rain gauges that have been present throughout Amazonia (20,
21) for most of the time since 1979, more than those included
in the global daily rainfall data (22). Both datasets show patterns
of temporal variability, including their trends, similar to that
obtained from the Global Precipitation Climatology Project
(GPCP) monthly rainfall data and the Tropical Rainfall Mea-
suring Mission (TRMM) satellite for the periods they overlap,
although these regional rain gauge-based datasets show lower
rainfall amounts compared with the satellite-based GPCP and
TRMM (Fig. S1). The Silva dataset (20) has fewer rain gauges
over the northeastern part of our southern Amazonian domain
(5°–15°S, 50°–70°W), whereas the SA24 dataset (21) does not
include rain gauges over the Bolivian Amazon, in the south-
western part of this domain. To mitigate such differences in the
areas covered by rain gauges, we average these two rainfall
datasets over each map cell for the period of 1979–2007 when
they overlap and use SA24 for the period of 2008–2011 to form
a merged daily rainfall dataset, referred to as the PM data. For
the period of January 1979–December 2011, daily rain rates of
the PM data are first spatially averaged over the southern Ama-
zonian domain and then temporally averaged over a 5-d period
(pentad) to reduce synoptic noise in estimating the DSA and
DSE dates. The observed DSE is determined by the first date
when the pentad mean rain rate changes from below to above
the climatological annual mean rain rate of the same rainfall
dataset during six out of eight pentads, and vice versa for the
DSA (19). This definition captures the rapid transition from
a lower to higher rainfall regime associated with the DSE, and
vice versa for the DSA. The DSE and DSA are not influenced by
any bias of rainfall amount, as long as the temporal patterns of
the rainfall variation are not affected. Similar definitions have
been widely used in the literature (18, 19, 23). For analysis of
models, we modify our criterion to five out of eight pentads to
best match the modeled DSE and DSA with observations.
The trends are computed using a least square fit. The confi-

dence intervals and significance are determined based on the
effective sample size and a t test, following Santer et al. (24). The
trend significance is further tested by the right-tailed (positive)

Vogelsang trend test, a more conservative test for strongly auto-
correlated and nonstationary time series (25).
Fig. 1 shows the temporal variations of the DSL, DSE, and the

mean rainfall during the dry-to-wet transition in austral spring
season derived from the PM dataset. The strong delay of the DSE
in 2004 and 2005 is consistent with previous reports on the 2005
Amazonian drought (26, 27). The 2010 drought was mainly
caused by strong rainfall reduction in early and middle 2010,
followed by a rapid increase of rainfall at the end of October (16)
(Fig. S2). Hence, the DSE in 2010 was not delayed. As shown in
Table 1, the DSL has increased at a rate of 1.3 ± 0.5 pentad or
about 6.5 ± 2.5 d per decade for uncertainties of P < 5% (24).
This increase is mainly caused by a delay of the DSE at a rate of
0.9 ± 0.4 pentads or 4.5 ± 2.0 d per decade (P < 5%), as also
evident in a decrease of rainfall by 0.19 ± 0.04 mm/d per decade
(P < 5%) during austral spring. The more stringent Vogelsang
test (25) still shows that these trends are significantly positive,
but with uncertainty P < 10%. This delay of the DSE in recent
decades is consistent with that inferred from a monthly rainfall
dataset (16), the significant trends of decreasing rainfall at two
long-term rain gauge stations located within our southern Ama-
zonia domain (28), and also a decrease of convective cloudiness
during austral spring detected by satellites (29). No significant
changes of the DSA and rain rate are detected (Fig. S3).
The main fire season over southern Amazonia spans the pe-

riod of August–October, during the transition from the dry to the
wet season. A delayed DSE would prolong the fire season,
leading to an increase of fire counts during October and No-
vember. Thus, the latter measured by satellite can provide an
independent verification of the former. Fig. 2 shows that a delay
of the DSE is correlated with fire counts in the prolonged fire
season (the correlation coefficient for the de-trended data is R =
0.83, P < 0.01, based on the method of ref. 30). Similarly, the
correlation coefficient for the de-trended DSL and fire counts is
0.88, P < 0.01. This relationship is further supported by an in-
crease of the McArthur Forest Fire Danger Index (FFDI, ref.
31), as determined from two independent atmospheric reanalysis
products, the European Center for Medium Range Forecast
Reanalysis (ERA)-Interim (32) and the National Center for
Environment Prediction (NCEP) reanalyses (33). A high FFDI
value represents a favorable meteorological condition for fire.
These consistent changes between three physically related but
independently obtained variables lend additional support to the
observed delay of the DSE.
What could cause this delay of the DSE over southern Ama-

zonia? Previous studies have established that stronger convective
inhibition energy (CIN) and/or a poleward displacement of the
subtropical jet over South America (SJSA) in austral winter are
important contributors to an anomalously late DSE in austral
spring (19, 34, 35). The former increases the work required to lift
air near the surface to the level of free convection, above which
the rising air becomes buoyant. The latter blocks cold-front
incursions from the extratropics that would trigger rainfall over
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Fig. 1. (A) Annual time series of the DSL (red line) and DSE (blue line) dates
derived from the PM daily rainfall data over the southern Amazonian do-
main show a decrease of DSL due to a delay of DSE. The unit is pentad (5 d).
On the left axis, the 55th pentad corresponds to September 2–7 of the cal-
endar date and the 70th pentad corresponds to December 10–15. (B) Time
series of austral spring seasonal rainfall over southern Amazonia derived
from the PM and GPCP datasets show decrease of rainfall consistent with the
delay of DSE shown in (A). The linear trend is determined by a least-square
fitting. Trends are significant at P < 5% based on Santer et al. (24).

Table 1. The linear trends, confident interval and significance of
the DSL and DSE for the periods 1979–2011 and 1979–2005

Data DSL DSE

PM (1979–2011) 1.3 ± 0.5 pen/dec 0.9 ± 0.4 pen/dec
8.0 ± 2.5 d/dec 4.5 ± 2.0 d/dec

PM(1979–2005) 2.8 ± 0.6 pen/dec 2.3 ± 0.4 pen/dec
14.0 ± 3.0 d/dec 11.5 ± 2.0 d/dec

Uncertainty less than 5% (P < 5%) as determined by the two-tailed t test
with consideration of effective degree of freedom (24). The DSL and DSE are
derived from the PM merged daily rainfall data and the unit is pentads per
decade (pen/dec) and days per decade (d/dec).
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Fu et al. (PNAS 2011) demonstrates a decline in rainfall from 1980 to 2010, associated with a delay in the rainy season onset



ARTICLES NATURE CLIMATE CHANGE

for CSD. The main dataset we use is from the Vegetation Optical 
Depth Climate Archive (VODCA)33 but we also analyse the 
NOAA Advanced Very-High-Resolution Radiometer’s (AVHRR) 
Normalized Difference Vegetation Index (NDVI)34 for compari-
son. Vegetation optical depth (VOD) has been previously used to 
estimate changes in vegetation biomass35, whereas NDVI is more 
commonly used to measure the greenness of vegetation (that is, 
photosynthetic activity36), which can saturate at dense grass cover. 
VOD, a microwave-derived product, does not saturate and remains 
sensitive to changes also at high biomass density35. We use the lon-
ger, Ku-band product from VODCA, which has a resolution of 
0.25° × 0.25°, from which we create a monthly dataset by taking the 
mean values and for direct comparison we rescale the NDVI data 
to the same resolution. For a check of robustness, we also use the 
C-band product from VODCA, which spans a shorter time period. 
We focus on two stressors of the Amazon that may cause resilience 
changes—precipitation decline and human influence.

Results
We use the Amazon basin as our study region and focus on 
those grid cells that have a ≥80% evergreen broadleaf (BL) frac-
tion according to the MODIS Land Cover Type product in 200137 
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(Methods). Figure 1 shows that mean changes in BL fraction in this 
region correspond well to changes in VOD. Averaged across the 
Amazon study region we find overall decreasing VOD over 2001–
2016, corresponding to the observed decrease in the number of grid 
cells that have BL ≥ 80% each year (Fig. 1a). Between 2001 and 2016, 
the BL fraction has changed most prominently in the south-eastern 
parts of the Amazon basin, along parts of the Amazon River and in 
some northern parts of the basin (Fig. 1b). Changes in VOD have 
a similar spatial pattern to changes in BL fraction, with decreases 
concentrated around the south-eastern edges of the forest (Fig. 1c). 
NDVI, in contrast, does not agree temporally or spatially with the 
changes in BL fraction (Supplementary Fig. 1), with NDVI increases 
observed in the south-eastern parts of the Amazon where defor-
estation rates are known to be highest. On the individual grid cell 
level, changes in BL are strongly correlated with changes in VOD 
(Pearson’s r = 0.556; Supplementary Fig. 2a) compared to changes 
in NDVI (r = −0.133; Supplementary Fig. 2b). This echoes previous 
in-situ comparisons between VOD and NDVI38. Hence, we focus 
our analysis on VOD in the following, with results for NDVI in the 
Supplementary Figures.

We begin our resilience analysis by focusing on the  
temporal changes of AR(1), computed in sliding windows from  

Fig. 1 | The relationship between BL fraction and VOD for the Amazon basin. a, Time series of MODIS Land Cover evergreen BL fraction and VODCA 
Ku-band product. Changes in BL fraction expressed as the percentage of grid cells that have BL fraction ≥80% in each year, compared to the number of 
grid cells that had BL fraction ≥80% in 2001, and VOD is the monthly mean. b, Changes in the BL fraction from 2001 to 2016 for grid cells where the BL 
fraction is ≥80% in 2001. c, Changes in VOD from 1991 to 2016 (difference between the 2012–2016 and 1991–1995 means) for the grid cells where the 
BL fraction was ≥80% in 2001. Country outlines were provided by the ‘maps’ package in R and Amazon basin outline was created from http://worldmap.
harvard.edu/data/geonode:amapoly_ivb (Methods).
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total) from 2000 to 2019 but with larger relative variations at local 
and regional scales from contemporaneous disturbance and recov-
ery processes. The largest year-to-year changes relative to the long-
term mean, represented by the coefficient of variation (CV), are 
in regions of low biomass density (≲100 Mg ha−1) where land-use 
activities and natural disturbances are frequent and widespread 
(Fig. 1B).

Globally, woody carbon stocks are increasing slowly with an av-
erage annual gain of 0.23 ± 0.09 PgC year−1 (Fig. 2). The long-term 
estimated net gain of carbon in live biomass from our method is larger 
than the results from inventory data (31) and within the range of vari-
ability of estimates from other methods including process-based mod-
els (16), regional carbon balance from accounting all emissions and 
uptakes (32–34), and top-down estimations (17, 20). Our estimates 
of carbon gain and loss across all vegetation types (fig. S2 and table S1) 
indicate that pixels with significantly net gains are 1.4 times more 
numerous than pixels with net losses. Regionally, net carbon gains 
dominate landscapes of western conifers and boreal forests of North 
America, tropical forests in Africa, including subtropical forests in 
eastern China, and the boreal forests of eastern Siberia (Fig. 2, A and B). 
Because of the slow-in-fast-out characteristic of the biomass carbon 
pool, the losses are instantaneous and can be estimated at smaller 
scales but gains, especially in intact forests, are slow and can only be 
detected on decadal time scales and at larger areas due to the pixel 

level biomass dynamics and the estimation uncertainty (8). Between 
2000 and 2019, carbon accumulation in terrestrial ecosystems is 
largely reflected in the increase of the carbon density of the remain-
ing forests rather than the total carbon storage (Table 1).

Among global ecosystems, moist tropical forests store the most 
biomass carbon (~154 ± 1 PgC), about 40% of the global total (Fig. 1, 
A and C, and table S2), and their 20-year carbon stock trend remains 
approximately neutral with a small net loss (0.05 ± 0.03 PgC year−1) 
(Fig. 2C). This trend is in agreement with inventory estimates of 
0.07 PgC year−1 net loss in all carbon pools from 1990 to 2007 (14). 
Tropical moist forests in South America are a net carbon loss of 
0.05 ± 0.02 PgC year−1 (Fig. 2B and fig. S3), losing carbon at a rate 
of about 0.6% per decade, likely attributable to deforestation, degra-
dation, and recent droughts (35–37). About 18% of areas of intact 
forests in tropical Americas (77 million ha) are gaining carbon at a 
rate of 0.19 megagrams carbon (MgC) ha−1 year−1, and 20% (86 mil-
lion ha) are losing carbon at a rate of 0.18 MgC ha−1 year−1; the remaining 
area has no significant trend. In contrast, African moist tropical for-
ests are a net gain of carbon (0.02 ± 0.01 PgC year−1) with close to 
40% of areas of intact forests showing a net gain at the rate of 0.40 MgC 
ha−1 year−1, and only 7% with a net loss with an average loss rate of 
0.36 MgC ha−1 year−1. Similarly, in Asia, 25% of areas of intact forests 
accumulated carbon at a rate of 0.35 MgC ha−1 year−1, and 15% of 
areas showed net carbon loss at a rate of 0.34 MgC ha−1 year−1.

Fig. 2. Long-term (2000–2019) trend of global live vegetation biomass carbon. (A) Pixel-level (in 10-km spatial resolution) vegetation carbon trend map. (B) LC-based 
trend map of vegetation carbon. (C) Time series of vegetation carbon for global and four major LC types. All trend analyses use the Mann-Kendall test, and regions with 
P > 0.05 were masked out.
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CWD values were usually close to zero, generating a weak and
nonsignificant correlation (P > 0.05, SI Appendix, Fig. S8 A and
B). However, rare events of water deficit were observed in ever-
wet forests, and during these periods the radar signal decreased as
expected (SI Appendix, Fig. S9). These results show that the long-
term decline of the radar signal reflects the legacy effect of
droughts on forest canopy structure across intact tropical
rainforests.

Rainforest Resistance and Resilience to Drought Events. We
then explored the drought resistance and resilience of intact
rainforests. To identify past droughts, we calculated maximum
CWD (MCWD) for each year and each pixel (4, 5, 26). The Z
score of MCWD was then calculated, and droughts were
defined as years with a Z score value below !1. To aid the
interpretation of figures, drought severity was then calculated as
the absolute value of the Z score of MCWD. For each drought
event, drought resistance was defined as the relative rate of
change in forest condition during and before drought distur-
bance and drought resilience as the ability to recover to the pre-
drought state (32–34). We studied resistance and resilience 2
years before and 2 years after the drought event; this time span
accounts for the 2-year legacy effect of drought previously
reported in rainforests (35). Although some rainforests need a
longer time to recover, the rate of recovery after a fixed period
of time is already an indication of the forest’s ability to recover
from droughts. The pixel-level results were summarized at
the continental scale by taking the median value of all pixels

(Figs. 3 and 4). We verified that our conclusions were not
altered if a longer drought legacy window (i.e., 3 instead of 2
years), a constant evapotranspiration of 100 mm/mo for calcu-
lating MCWD (26), a more severe water stress threshold for
defining past droughts (i.e., !1.5 rather than !1), and
detrended radar signals were used (SI Appendix, Figs.
S10–S13). We also verified that the conclusions were not
altered when the self-calibrating Palmer Drought Severity Index
(scPDSI) was used instead of the Z score of MCWD to identify
past drought events (SI Appendix, Fig. S14; 36).

We found that the radar signal decreased with increasing
drought severity in all three continents (Fig. 3 A–C), suggesting
that intact tropical rainforests are generally vulnerable to severe
droughts. The decreasing trend of resistance with increasing
drought severity was most pronounced and significant in the
tropical Americas (Fig. 3A). With respect to drought resilience,
American rainforests did not recover to predrought conditions
after droughts with a severity (i.e., the absolute value of the Z
score of MCWD) >1.5 (Fig. 3D). In contrast, African and Asian
rainforests were resilient to severe droughts with a severity >2
(Fig. 3 E and F). This could be due to the higher frequency of
droughts in Africa and Asia historically (29).

The above results also suggest the existence of a threshold of
drought impact beyond which forest resilience was systemati-
cally negative, implying the risk of a forest dieback. We
explored further the existence of this threshold. We found that,
in the Americas, 50% of the intact tropical rainforest pixels did
not return to predrought conditions when drought severity
exceeded a pixel-specific threshold. This threshold was defined
as the drought severity value beyond which resilience was
always negative in the pixel. This fraction was also detectable
but lower in Africa (43%) and in Asia (27%; SI Appendix, Fig.
S15). These results show that on a global scale, intact tropical
rainforests are not resistant to severe droughts. Also, American
intact rainforests are most vulnerable to severe droughts because
of their poor ability to recover to predrought conditions.

Temporal Trends in Rainforest Resistance and Resilience.
Finally, we explored how drought resistance and resilience have
changed during the last 3 decades. We found a decrease in
drought resistance in all three continents, with the strengths of
trends varying from !0.19 to !0.41 (τ value of the Mann-
Kendall test; τ = !1 indicates a strong decrease, while τ = 1
indicates a strong increase) (Fig. 4). The most pronounced
trend of decreasing resistance was found in the American
tropics (τ = !0.41; two-tailed P < 0.05). At the same time,
resilience did not increase significantly on a global scale: it
decreased in the Americas (τ = !0.29) and did not change sig-
nificantly in the African and Asian tropics (jτj ≤ 0.07; P >
0.05). Pixel-level analyses were consistent with regional results:
the median value of the trends in resistance across pixels was
the lowest in the Americas (!0.5), followed by Asia (!0.48)
and Africa (!0.4), while the median of the trends in resilience
was slightly negative or close to zero (SI Appendix, Fig. S16).
Thus, on a global scale, the majority of intact tropical rainfor-
ests appears to be increasingly vulnerable to drought, with
decreasing resistance but no obvious increase in resilience. This
is especially the case in the tropical Americas.

DISCUSSION

Interpreting the Long-Term Declines in Radar Signal. We
quantified the long-term vulnerability of intact rainforests to
repeated droughts, detected by persistent trends of declining

Fig. 2. Spatial patterns of the radar signal trends (1992–2018) for the (A)
American, (B) African, and (C) Asian intact tropical rainforests. A linear regres-
sion was fitted to the monthly radar signals in each intact tropical rainforest
pixel, and the slope of the regression is reported. The histograms beside each
regional map show the proportion of pixels in each trend class. The color bar
and numeric legend values are the same in the histograms and maps.
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biomass) (21). In addition, microwave signals penetrate clouds
and rain over rainforests with negligible attenuation––if the
wavelength is much larger than the size of raindrops, for exam-
ple, at ∼6 cm, also called the C radiofrequency band (SI
Appendix, Fig. S1). However, there is not a single microwave
data set acquired at C-band or longer wavelength that spans
more than 2 decades (22–24; SI Appendix), which limits the
use of these data for the trend analysis of forest response to
drought. We have created a harmonized pantropical C-band
radar data set at 25 km resolution from 1992 to 2018 (SI
Appendix, Figs. S2 and S3). This time series can in principle be
extended beyond 2018 as similar C-band radar missions are
secured in the forthcoming decades. In closed forest environ-
ments, the C-band radar signal penetrates a few meters into the
canopy (25), and thus mainly measures the dynamics of the
upper canopy. Temporal fluctuations in the C-band radar signal
are due to seasonal changes in canopy moisture and long-term
changes in canopy structure, both of which quantify the response
of forests to environmental factors, such as drought (21).
We analyzed the correlation between the radar backscattered

intensity signal (expressed in decibels [dB]; Materials and Meth-
ods) and all of the drought events since 1992. This study was
restricted to intact tropical rainforests, formally defined as pixels
with less than 5% cumulative forest degradation or deforesta-
tion throughout the study period, to avoid confounding effects
of land-cover change (2) (Materials and Methods). We explored
the long-term trends in radar signal, and the changes in vulner-
ability of rainforests to repeated droughts. Droughts were
detected using the cumulative water deficit (CWD, negative
values signifying water stress), which is robust to site-level stud-
ies (6, 26). The CWD index was calculated as the cumulative
monthly deficit of precipitation (27) minus evapotranspiration
(SI Appendix, Fig. S4; 28).

RESULTS

Drought Responses of Intact Tropical Rainforests across
Continents. In the American tropics, the radar signal declined
continuously during the study period at a rate of !4.8 10!3

dB y!1 (P < 0.001; Fig. 1A). Sudden decreases, or “breaks,” in
radar signal were detected (Materials and Methods), correspond-
ing to the droughts of 1997–1998, 2005, 2010, and 2015 (SI
Appendix, Fig. S5A). In tropical Africa, a long-term and signifi-
cant decline in the radar signal was also observed (!2.7 10!3

dB y!1, P < 0.001; Fig. 1B). Breaks in the radar signal were
detected during the droughts of 1999–2000, 2004–2005,
2010–2011, and 2015 (SI Appendix, Fig. S5B). The 2004–2005

African drought, although not the most severe, was followed by
continued water stress in 2006 and 2007 (Fig. 1B; 29), which
disrupted the trend of increasing radar signal before 2004 and
caused a sudden decline thereafter (SI Appendix, Fig. S5B).

A long-term decreasing trend in the radar signal of !4.3
10!3 dB y!1 (P < 0.001) was also detected in tropical Asia
(Fig. 1C). Breaks in the radar signal were detected around the
1997–1998, 2006, and 2015–2016 Asian droughts (SI
Appendix, Fig. S5C). The impacts of the mega-droughts associ-
ated with the extreme El Ni~no events of 1997–1998 and
2015–2016 were the most pronounced (Fig. 1C). However, the
radar signal decreased significantly even when both mega-
droughts were ignored. Also, the recovery trajectories after these
two droughts differed, the former causing a break in the radar sig-
nal that was not recovered until 2018, whereas the latter was fol-
lowed by a rapid postdrought recovery (Fig. 1C and SI Appendix,
Fig. S5C). Compared to the African and American tropics, the
seasonality of the radar signal was the weakest in Asia, likely due
to the weak seasonality of precipitation in tropical Asia.

These trends do not coincide with changes in radar sensors,
and are therefore unlikely to be due to an instrumental artifact
(SI Appendix). The trends were also tested against the influence
of spatial autocorrelation in the radar signal. Toward this pur-
pose, we selected pixels that have low signal correlations (Pear-
son r < 0.5). Similar declining trends (Pearson r ≥ 0.92) were
still observed, suggesting the robustness of the trends against
spatial autocorrelation (SI Appendix, Fig. S6).

Spatial Patterns of the Trend in Radar Signal. In the American
tropics, 93% of the intact rainforest pixels (∼2.3 million km2

in total, with each pixel 25 × 25 km) showed decreasing trends
in radar signal, with south and southwest of Amazonia decreas-
ing the most (Fig. 2A). In Africa, 84% (0.6 million km2) of
intact rainforests showed a decline in the radar signal, but 18%
of the pixels had the opposite trend (Fig. 2B). In Asia, the trend
of decrease in the radar signal was also widespread, occurring in
88% (0.28 million km2) of all intact rainforests. We verified
that the upward or downward trends in the signal were not due
to different deforestation/degradation intensities, but to differ-
ent water stress legacies, suggesting that water stress is the pri-
mary driver of the radar signal trends (SI Appendix, Fig. S7).
We also found that the radar signal correlated not only with the
CWD index (median Pearson r = 0.44) but also with land sur-
face temperature (median Pearson r = !0.47) and air tempera-
ture (median Pearson r = !0.50), two other proxies of climate
anomaly (SI Appendix, Fig. S8; 30, 31). In ever-wet forests, with-
out a pronounced dry season, such as in northwest Amazonia,

Fig. 1. Drought response of intact tropical rainforests, 1992 to 2018. Monthly radar signal anomaly and CWD at the continental level (average across all pix-
els) were shown for intact tropical rainforests in (A) the Americas, (B) Africa, and (C) Asia. In each panel, radar signal anomaly was calculated as a deviation
from the long-term average value and represented by a thin line, and the 12-mo moving average of the signal was shown as a thick line. A linear regression
was fitted to the monthly radar signal and the regression equation is presented in the lower-left corner of each subset. Drought events that caused “breaks”
in radar signal are marked by circles (see SI Appendix, Fig. S5 for the detection of the “breaks”).
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Radar signal related to upper canopy also 
declining since the early 2000 due to repeated 
droughts in the Amazon (Tao et al. PNAS 2022)
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and satellite retrievals that has been updated to the
GPCP, version 2.2, methodology. Second, we use the
Tropical Rainfall Measuring Mission (TRMM)-estimated
precipitation (product 3B43) at a 0.258 spatial resolution
(Huffman et al. 2007), a best estimate that combines
satellite radar and microwave observations. Third,
we use the Global Precipitation Climatology Centre
(GPCC) 0.58-resolution gridded dataset that is based
on station observations (Schneider et al. 2015). Fourth,
we use the Climatic Research Unit 0.58-resolution
gridded dataset (version 3.21) based on station obser-
vations (Jones and Harris 2013; Harris et al. 2014).
Basin-average precipitation is calculated as an area-
weighted mean over the catchment.

Errors exist within each individual precipitation data-
set, including assumptions of the spatial footprint of in-
dividual measurement stations when scaled to a grid
(Delahaye et al. 2015). To bound the error in pre-
cipitation, we estimate the water-budget-based ET using
all four precipitation products (Fig. 3) and show results
for the average value of ETGRACE as well as the range
across all estimates (Fig. 4a). Using the full range across
the four datasets is a conservative approach, as it assumes
that the errors in all precipitation datasets are spatially
uniform and correlated. Using multiple precipitation
products to constrain the error is analogous to estimates
of annual mean error calculated for a coarser-spatial-
resolutionGPCPproduct by comparingGPCPwith other
satellite-based rainfall products (Adler et al. 2012). The
range in estimates of ET using four precipitation datasets
and two finite difference methods for calculating dS/dt is
used to generate an uncertainty range for our estimate of
ETGRACE that is shown in the figures as gray shading.
We use additional datasets of ancillary variables for

interpretation of the seasonal cycle of ET. We use
NASA’s Clouds and the Earth’s Radiant Energy System
(CERES) synoptic (SYN) satellite product monthly
averaged data at 18 3 18 resolution (Wielicki et al. 1996;
Rutan et al. 2015; Doelling et al. 2013) to estimate the
climatology of downwelling solar radiation averaged
over the Amazon basin. We report both the shortwave
downwelling radiation, as well as the estimated potential
evapotranspiration using a Budyko conversion where
radiation is converted to units of potential water flux by
dividing by the latent heat of vaporization (Budyko
1961). Solar-induced fluorescence (SIF) is a relatively
new satellite-retrieved metric that correlates with pho-
tosynthetic rates more directly than products based on
greenness estimates. We use the Global Ozone Moni-
toring Experiment 2 (GOME-2)-based estimate of
SIF at 740 nm (Joiner et al. 2016, 2013) available for
the years 2007–16 (version 26) to calculate the clima-
tological seasonal cycle averaged over the Amazon
basin and to give an indication of the seasonality of
photosynthesis.

b. Other estimates of ET

We compare ETGRACE with other data products and
model estimates.We compare with an ET product based
on upscaled eddy-covariance-derived site-level esti-
mates combined with other fields such as satellite-
observed absorbed photosynthetically active radiation
(FLUXNET-MTE; Jung et al. 2010). This machine
learning model–based approach uses ground data from
FLUXNET towers, of which three towers in the Ama-
zon basin region are used as input to their model (see
description of flux towers below).

FIG. 2. Comparison between terms derived from S usingmonthly
mean values and those derived using storage interpolated to a daily
scale using a spline. (a) Parameter S as directly reported monthly
means (blue) vs interpolated to daily values using a spline (red);
(b) the derivative of S (dS/dt) taken using the derivative of the daily
interpolated S (cyan) and via a centered finite difference of the
monthly values (darker blue); and (c) the estimated ET from the
water budget approach using rainfall from TRMM, with dS/dt de-
rived using daily interpolated values of S (darker green) vs dS/dt
derived via a centered finite difference of monthly mean values
of S (lighter green).
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Water balance arguments suggest decline in ET in Amazon basin starting 2012
Increasing temperature not yet affecting ET?
Increasing CO2 affecting water use efficiency?

to validate models in this region, it is difficult to identify
the uncertainty in their prediction of ET.
To investigate the large-scale dynamics of ET on sub-

annual time scales, we take an alternative approach to
estimating the ET over the Amazon basin by calculating
the monthly water budget from satellite fields and river
runoff. By combining a monthly resolved estimate of
water storage on land—from the Gravity Recovery and
Climate Experiment (GRACE) satellite gravimetry
measurements—with estimates of precipitation and river
discharge, we are able to calculate the seasonal dynamics
of evapotranspiration over the basin by difference.While
the average annual evapotranspiration can be calculated
directly from the balance between runoff and pre-
cipitation over time scales for which storage does not
change, estimates of water storage from the GRACE
satellite allow us to additionally calculate the seasonal
cycle of ET by estimating the storage on a monthly time
scale, thus removing the constraint of the assumption that
storage is not changing in time. GRACE data for the
Amazon basin have been used previously to estimate the
total water storage (Becker et al. 2011; Chen et al. 2009,
2010; Pokhrel et al. 2013), the relative importance of
precipitation compared with ET and runoff (Crowley
et al. 2008), surface water (Han et al. 2009, 2010), total
basin discharge (Syed et al. 2005), and trends in annual
mean ET (Zeng et al. 2012). However, to our knowledge
the data have not been used previously to calculate the
seasonal cycle of ET for the Amazon region.

2. Materials and methods

Based on methodological assumptions, we estimate
ET from the water budget as

ET
GRACE

5P2Q2 dS/dt , (1)

where P is precipitation, Q is runoff, S is storage, and t is
time. The water budget estimate of evapotranspiration
(ETGRACE) is calculatedwithdS/dtderived fromachange in
GRACE water storage per unit time, P from several pre-
cipitation products, and Q from the river discharge mea-
sured at Óbidos (datasets described below). This general
approach had been taken in several other papers to estimate
ET using total water storage estimates from the GRACE
satellite (Long et al. 2014; Rodell et al. 2011). The derived
Amazon basin averages for each component of the water
budget are available as supplemental material with this pa-
per (and archived at http://hdl.handle.net/1773/39245).

a. Data sources

To estimateQ we use discharge data from theÓbidos
station from the Agência Nacional de Águas (obtained

from http://www2.ana.gov.br/Paginas/EN/default.aspx).
To determine the area and domain of the catchment
basin for discharge at this location, we used the shape-
files for subbasins from Seyler et al. (2009; obtained
from http://www.ore-hybam.org/index.php/eng/Data/
Cartography/Amazon-basin-hydrography) and aggre-
gated all subbasins upstream of Óbidos. This domain
was used to determine the area weighting for all other
calculations in our analysis, including gridded datasets
and gridded model output.
We estimate S in the basin from the GRACE-based

total water storage product following Landerer and
Swenson (2012) and summarized below. We used
GRACE total water storage (Swenson 2012) estimated
using three different estimates of the geoid and averaged
them together (Swenson and Wahr 2006; Sakumura
et al. 2014). Then, we calculate an Amazon basin aver-
age using an area-weighted average of GRACE total
water storage multiplied by the scale factor for each grid
point (provided on grace.jpl.nasa.gov). GRACE total
water storage estimates are reported for eachmonth and
generally reflect an average of all days falling within a
calendar month. We calculate the basin-estimated total
error for GRACE from the combination of measure-
ment error and leakage error, taking into account co-
variance as in Landerer and Swenson (2012) and
outlined on the GRACE website. We estimate the ba-
sinwide error in GRACE total water storage to be
16.5mm. This is our best approximation; however, this
error estimate applies to the annual mean, and we lack
the individual error estimates to directly calculate the
error for individual months.
The change in water storage for each month (dS/dt) is

calculated by differentiation of S, which we estimate using
two methods. First, we interpolate S to the daily scale
using a spline (Fig. 2a), then differentiate S to dS/dt by
backward difference, and average the dS/dt for each
month. Months of dS/dt are excluded if there is no mea-
surement of Swithin 19 days of the month center. Second,
we use a centered finite difference on monthly values
where the change in storage in, for example, February is
calculated as the difference between the storage in March
and the storage in January divided by 2dt. The in-
terpolation method yields a very similar answer to using a
centered difference onmonthly data but has the advantage
of preserving more of the data from S in the derivative
(Fig. 2). To account for the uncertainty associated with the
choice of differentiation methods, we include both
methods and report the resulting range of ET estimates.
Precipitation is estimated using four datasets. First,

from the Global Precipitation Climatology Project
(GPCP) 18 product (Huffman et al. 2001, 2009), we use a
merged estimate based on ground station observations
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Uses data from GRACE and river discharge to quantify ET 
(Swann and Koven 2017)



Or maybe not? (More on this in subsequent slides) 
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radiances using the version 4 AIRS spectral response
function (SRF) (Strow et al., 2003) that is interpolated
to a uniform grid of 0.004 cm�1 centered on the channel
center frequencies. The OSS radiative transfer code provides
speedup of 20–100⇥ over the original TES operational
radiation transfer model (Clough et al., 2006).

4 Description of the retrieval approach

The optimal estimation algorithm used in this analysis for
quantifying CH4, HDO, H2O, temperature, cloud proper-
ties, and emissivity is extensively discussed in Worden et
al. (2004, 2012) and Bowman et al. (2006). We therefore
refer the reader to those papers for a description of the
retrieval algorithm, with a suggestion that they start with
the Worden et al. (2012) paper; however, we will briefly
summarize the retrieval approach here. This retrieval algo-
rithm, now called the MUlti-SpEctra, MUlti-SpEcies, MUlti-
Sensors (MUSES) algorithm (Worden et al., 2007; Fu et
al., 2013, 2016, 2018; Worden et al., 2013), can use radi-
ances from multiple instruments including TES, CrIS, OMI,
OMPS, TROPOMI, and MLS to quantify geophysical ob-
servables that affect the corresponding radiance.

For the AIRS retrievals discussed here, we simultaneously
estimate not just CH4, CO, HDO, and H2O but also tem-
perature (surface and atmosphere), emissivity (if over land),
and a spectrally varying gray body cloud (e.g., Kulawik et
al., 2006; Eldering et al., 2008). As in Worden et al. (2006,
2012) the constraint matrix used to regularize the HDO and
H2O components of the retrieval includes off-diagonal com-
ponents that reflect a priori knowledge about the variabil-
ity of HDO with respect to H2O in order to ensure that re-
trieval of the ratio of HDO to H2O is optimized, as opposed
to either HDO or H2O alone. The prior information used for
this covariance is derived from monthly climatologies using
the NCAR Global Climate Model as discussed in Worden et
al. (2006). The a priori profile used for the HDO/H2O ratio
is set to be constant over the whole globe, and represents the
mean tropical a priori profile from the NCAR model. How-
ever, the H2O a priori profile is allowed to vary by latitude
and is based on reanalysis (Worden et al., 2006); therefore
the HDO profile is the mean tropical profile of the HDO/H2O
ratio from the NCAR model multiplied by the H2O a priori
profile.

We use single-pixel radiances that have not been trans-
formed through “cloud clearing” in order to preserve the
original well-characterized radiance noise characteristics for
use in our estimates (Irion et al., 2018; DeSouza-Machado et
al., 2018) and because we find that single-pixel AIRS radi-
ances have sufficient information about cloud pressure and
optical depth to be retrieved jointly with the trace gases,
as demonstrated empirically through validation of these
AIRS-based composition retrievals with TES retrievals (e.g.,
Figs. 1–4). We assume the noise in any given pixel is uncor-

Figure 1. (a) AIRS radiance at approximately 8 µm for a typical
tropical scene. (b) The total column (log) Jacobian for H2O nor-
malized by the AIRS NESR. (c) The total column (log) Jacobian
for HDO normalized by the AIRS NESR.

related with that from adjacent pixels. However, these corre-
lations are known to exist (e.g., Pagano et al., 2008) and the
impact of ignoring them is that our calculated uncertainties
will be larger than expected and therefore our noise-related
uncertainty should be considered a conservative estimate.

A primary difference between the retrieval approach
shown in this paper versus the TES methane and HDO re-
trievals (Worden et al., 2012) and those from previous ef-
forts using AIRS radiances (e.g., Xiong et al., 2008) is that
we retrieve these trace gas profiles using the AIRS radiances
from ⇠ 8 and ⇠ 12 µm instead of radiances from the 8 µm
region alone in order to provide a stronger constraint on at-
mospheric temperature and hence reduce uncertainty from
knowledge of temperature on the HDO and H2O retrievals.
The 8 µm region used (⇠ 1217 to 1315 cm�1) for these re-
trievals has the most sensitivity to HDO and H2O, whereas
the 12 µm band (⇠ 650 to 900 cm�1) is primarily sensitive
to temperature and H2O. All channels are used within this
spectra unless flagged as poor during calibration.

5 Characterization of HDO/H2O profiles

While H2O is quantified using radiances from both the 12
and 8 µm spectral regions, the primary absorption lines used
here to quantify HDO are in the 8 µm region. There are other
HDO (and H2O) lines available to use from the AIRS ra-
diance but for now we only use the 8 µm region to ensure
consistency between AIRS and TES data. Figure 1a shows
the 8 µm radiance and the Jacobian, or sensitivity of the ra-
diance to variations in the (log) H2O and (log) HDO, respec-
tively (Fig. 1b, c). These Jacobians are normalized by the
instrument noise. For example, a value of 1 means that it
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Figure 2. The rows of the averaging kernel matrix for the HDO re-
trieval corresponding to the radiance shown in Fig. 1. The different
colors and symbols are used to indicate the pressure levels corre-
sponding to each row of the averaging kernel matrix.

would take a 100 % change in the corresponding species to
distinguish between two similar radiances (everything about
the observed scene and radiance is the same except for the
species of interest) above the noise level. A value of ⇠ �50
therefore means that only a 2 % variation is required (or
1/50).

Figure 2 shows the averaging kernel matrix for the HDO
component of the joint retrieval. The averaging kernel de-
scribes the response of the estimate, or log(HDO), relative to
variations in the true state; consequently it can also be used
to evaluate the vertical resolution and sensitivity of the es-
timate. For example, if HDO varies by 100 % at 908 hPa,
then the AIRS estimate would be able to observe about 30 %
of the variability because the averaging kernel is approx-
imately 0.3 at that level. The averaging kernel at 908 hPa
also depends on the deuterium content at several other pres-
sure levels below and above, indicating that the estimate
at 908 hPa depends on the deuterium content variations at
these other levels. Not shown are the dependencies of the
(log) HDO estimate on those from the (log) H2O estimate.
These dependencies between the HDO averaging kernels and
with the H2O averaging kernels are accounted for when con-
structing the HDO/H2O ratio; however a residual uncertainty
called the “smoothing” error is imparted when comparing the
HDO/H2O ratio to independent data; this smoothing error
is part of the error budget shown in Fig. 3. As discussed in
Worden et al. (2012) and Schneider et al. (2012), the sensi-
tivity of the estimated HDO/H2O ratio is limited by the sen-
sitivity of the estimate to HDO. Users of these data should
note that this ratio is typically used with that of H2O in or-
der to better evaluate their joint variation (HDO/H2O, H2O)
against simple mixing and rainfall models (Noone et al.,
2011). However, the sensitivity of the radiance to H2O vari-
ations is much stronger than that for HDO, although the al-
titude region of the HDO sensitivity typically overlaps with

the H2O sensitivity. Schneider et al. (2012) discuss how to
created HDO/H2O, H2O pairs to mitigate this component of
the smoothing error when comparing these data against the
simple models described in Noone et al., (2011). For com-
parison to more complex global climate models the user of
these data also needs to apply the HDO and H2O averaging
kernels to the corresponding model fields (e.g., Risi et al.,
2012).

Figure 3a shows the tropospheric deuterium content
(or HDO/H2O ratio) derived from AIRS observations on
1 July 2006. Despite the improved computational perfor-
mance of the OSS radiative transfer calculation relative to
the TES algorithm line-by-line calculation (Clough et al.,
2005), the retrieval is still sufficiently expensive such that
we can only process a subset of the AIRS retrievals. Consid-
ering the computational cost, for the purpose of constructing
a record we currently only process AIRS retrievals from be-
tween 45� S and 65� N that coincide with the nearest TES
observation but with an additional two observations within
100 km of the TES track over the continents; this ad hoc sam-
pling strategy is based on experience with previous studies
using the TES deuterium and methane measurements. The
traditional notation for this quantity is called “delta-D” , or
“�-D” with units of “per mil” or parts per thousand relative
to the Standard Mean Ocean Water (SMOW) deuterium con-
tent, which is 3.11⇥10�4 molecules of HDO per molecule of
H2O. The observations shown represent the deuterium con-
tent for the pressures between 750 and 350 hPa, where we
find the AIRS and TES observations have maximal overlap
in their vertical resolution.

The errors are calculated during the optimal estimation re-
trieval (Bowman et al., 2006; Worden et al., 2012) and de-
pend on the expected noise of the AIRS radiances and the pa-
rameters that are co-retrieved with the AIRS HDO/H2O ratio
such as temperature, surface emissivity, clouds, and methane.
As noted in Worden et al. (2012) these co-retrieved parame-
ters affect both the precision and accuracy whereas the noise
only affects the precision. The total error (Fig. 3b) is given
in units of per mil and ranges between 25 ‰ and 30 ‰. The
DOFS, or trace of the averaging kernel, are shown in Fig. 3c
and indicate that many of the HDO/H2O retrievals can re-
solve different parts of the troposphere, at least in the tropics,
because (as demonstrated in Fig. 2) the rows of the averag-
ing kernels are separated between the boundary layer region
(surface to ⇠ 750 hPa) and the free troposphere (⇠ 600 to
300 hPa). However, these observations cannot completely re-
solve the total variability in these two regions of the atmo-
sphere because the total DOFS is typically 1.5 or less and
for the measurement to be able to resolve the variability (to
within the calculated error) of the two regions there would
need to be at least 2 DOFS.
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What do Tropospheric Deuterium Measurements say 
about S. American Tropical Water Balance during the 21rst century?

(first a primer on TES and AIRS measurements of the HDO/H2O ratio)

• We convert NASA Aqua AIRS observed spectrally resolved radiances to tropospheric profiles of HDO/H2O using 
an optimal estimation approach (Worden et al. AMT 2019)

• These data are sensitive to ~2 pieces of information in the tropics and cannot resolve the near-surface layer
• AIRS provides a well-characterized record of tropospheric deuterium content (HDO/H2O) for 2003 to the 

present with no observable changes in calibration affecting this record
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research that can be used to quantify change, characterize processes, and examine function 
within the Earth System over time.” 
1.4 Technical Approach and Methodology 
1.4.1 Generation of E-P record (2003 through the present) from satellite 

deuterium measurements. 
This section describes how we will generate estimates and uncertainties of E-P for the 

tropical ocean and for the Amazon from AIRS and CRIS measurements of the HDO/H2O ratio in 
water vapor. This section, along with content from Shi et al. (2021) will form much of the 
Algorithm Theoretical Basis Document that describes this new product.  AIRS and CRIS 
measurements of the HDO/H2O ratio have already been developed from the NASA TROPESS 
project along with the approach for projecting these data to a proxy that co-varies with E-P . Our 
proposed effort is to calibrate the proxy to an estimate of E-P and evaluate its uncertainties using 
a combination of satellite and aircraft data, and models. We will deliver this algorithm to the 
TROPESS project which in turn will continue delivery of gridded E-P estimates to the NASA 
Data Archive Center. 
1.4.1.1 AIRS and CRIS tropospheric vapor deuterium content retrievals (funded by NASA 

TROPESS) 
 The deuterium content of a measurement is traditionally given in parts per thousand relative 

to the deuterium content of ocean waters of 3.11x10-4 molecules of HDO/H2O and referred to as 
dD. A value of zero means the measurement has the same deuterium content as the ocean and a 
value of -1000 permil means the measured air parcel has no deuterium. Processes that modify the 
deuterium content by preferentially selecting HDO over H2O or vice versa are said to induce 
fractionation. The deuterium content of water vapor in the free-troposphere over the tropical 
continents is primarily modified by mixing of ET from nearby sources, transport of moisture 
from distant sources, and precipitation (e.g. Galewsky et al. and refs therein). Rainfall depletes 
vapor of deuterium because isotopically heavier molecules preferentially condense; whereas 
mixing of evaporated or transpired water from the deuterium-rich ocean or land surface tends to 
increase the atmospheric dD. Furthermore, since transpiration and the complete evaporation of 

 
Figure 2:  Deuterium content of water vapor is typically higher in the tropics and depleted towards 
the poles due to gradual condensation. Highest values are over tropical land due to transpiration and 
convection. The TROPESS project can process about 500000 observations / month. AIRS and CRIS 
show different latitudinal gradients due to different sensitivities which vary with temperature. 

AIRS Water Isotope Retrievals for Oct. 2020 CRIS Water Isotope Retrievals for Oct. 2020

• Lighter Isotopes Preferentially Evaporate : Heavier Isotopes Preferentially Condense: No net isotopic fractionation for 
transpiration

• Deuterium content given by parts per thousand relative to ocean water content à d-D = 0 means deuterium content is same 
as ocean water; d-D = -1000 means there is no HDO.

• Largest deuterium content in the tropics less at the poles as gradual rainout during transport depletes the isotopic 
composition

• Global observations show enhanced deuterium content over tropical forests in the dry season, consistent with increased 
contribution from transpiration

expect a linear relationship between δD_004 and ET-P and (2)
quantify uncertainties in our method of using regressions of
TWS/discharge and AIRS δD_004 at river-basin scales to estimate
ET-P across the Amazon. Figure 2b shows ET-P versus δD_004 in
iCAM for the same regions shown in Fig. 2a. As with the
observed relationships between AIRS δD_004 and TWS/dis-
charge, the modeled relationships are linear (correlation coeffi-
cients of 0.84 or higher) for the wet Amazon. However, observed
ET-P is largely negative throughout the year over the wet tropics
(i.e., in river basins close to the Atlantic and in northwestern
Amazon), whereas iCAM has ET-P being positive for ~1/3 of the
year. Because of these large differences, we cannot use iCAM as a

way to calibrate the δD_004 proxy. Instead, we use the iCAM
model to evalute uncertainties in the proxy and whether seasonal
changes in dynamics and moisture sources change the ET-P and
δD_004 relationship. We quantify this uncertainty as the root-
mean square (RMS) difference between the iCAM ET-P simula-
tion and the ET-P derived from the ET-P and δD_004 relation-
ships from iCAM (i.e., the residual standard deviation of the
regressions shown in Fig. 2b). Because the uncertainty in the
AIRS deuterium data is relatively small for monthly averages (~4
per mil)30, the primary source of scatter in Fig. 2b is likely the
variable sources of ET and precipitation or the isotopic physics
used in iCAM. However, other processes not well modeled by

Fig. 1 The diagram of water vapor and δD (δD_004) dynamics. a The processes influencing δD_004 variability, shown on a plot of water vapor volume
mixing ratio (y-axis) versus δD (x-axis). For a constant water vapor volume mixing ratio (4mmol mol−1, flat gray line labeled “Reference VMR”), variations
in the hydrogen isotope ratio (δD_004, shown in the Figure as δD004) represent the shifting importance of precipitation vs. evapotranspiration (ET-P). The
precise scaling of δD_004 to ET-P will be modified by the efficiency of rainout (i.e., the efficiency with which cloud condensate is converted to rain) and by
the source of moisture to the atmosphere. For example, the two-sided black arrow shows the expected range of δD_004 if oceanic evaporation is the sole
source of moisture to the atmosphere (blue line) and condensate formed during convection is immediately removed from the atmosphere by precipitation
(red line). The intersection of the blue and red lines with the “Reference VMR” line explicitly shows the expected δD_004 values if P= 0 or ET= 0,
respectively. As the contribution of transpiration to atmospheric moistening increases (green line), the δD_004 range will extend to the right, causing the
expected δD_004 value to be higher when P= 0. Contrastingly, as either rain evaporation (purple dashed line) or remote moisture convergence (orange
line) becomes important, the δD_004 range will extend to lower isotope ratios, causing the expected δD_004 value to be lower when ET= 0. Decreasing
the efficiency with which condensate forms precipitation (pink dotted line) will, in comparison, increase the expected δD_004 value when ET= 0, limiting
the expected δD_004 range for a given set of ET-P states. b The schematic illustrates the key processes in (a).

Fig. 2 The regressions of ET-P on δD_004 from both observations and iCAM. a represents the regressions of TWS/discharge on AIRS δD_004 and b
represents the regressions of ET-P on δD_004 from iCAM during 2013–2015. Here, we use observations and iCAM output at a monthly time scale. Basins
close to the Atlantic are river basins 1, 3, 10, and 12 from Fig. 3b; basins in the Northwest are basins 5, 8, 9,13, and 14; basins in the Southeast are basins 2,
4, 6, 7, and 11. For each region, we calculate the area-weighted average of ET-P from TWS/discharge, AIRS δD_004, and ET-P and δD_004 from iCAM for
all months during 2003–2015. Here, the region comprised of basins close to the Atlantic has a higher slope than the other regions, according to both the
observations and iCAM, indicating a different moisture source.
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(Top Left) Map of AIRS H2O vertically integrated between 825 and 400 hPa

(Top Right) AIRS Delta-D and H2O observations overlayed on simple mixing / 
rainfall, or Rayleigh, models for air-parcels from land (black curves) and ocean 
(green curves)

(Bottom Left) Difference between Observed Delta-D and Rayleigh model of Delta-
D over land indicates if air-parcel is from transpiration
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Where does the water in the free-troposphere during 
dry-to-wet Season Transition over the Amazon originate?
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Comparison of AIRS Delta-D difference figure and MODIS indicates enhanced deuterium content in Southern Amazon 
is associated with shallow convection across the Amazon

This priming of the lower-troposphere with deuterium enriched transpiration was called the “Shallow Convection 
Moisture Pump” in Wright et al. (2017) as a mechanism explaining why the S. Amazon monsoon starts ~6 weeks 
before arrival of heavy rainfall associated with the ITCZ
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expect a linear relationship between δD_004 and ET-P and (2)
quantify uncertainties in our method of using regressions of
TWS/discharge and AIRS δD_004 at river-basin scales to estimate
ET-P across the Amazon. Figure 2b shows ET-P versus δD_004 in
iCAM for the same regions shown in Fig. 2a. As with the
observed relationships between AIRS δD_004 and TWS/dis-
charge, the modeled relationships are linear (correlation coeffi-
cients of 0.84 or higher) for the wet Amazon. However, observed
ET-P is largely negative throughout the year over the wet tropics
(i.e., in river basins close to the Atlantic and in northwestern
Amazon), whereas iCAM has ET-P being positive for ~1/3 of the
year. Because of these large differences, we cannot use iCAM as a

way to calibrate the δD_004 proxy. Instead, we use the iCAM
model to evalute uncertainties in the proxy and whether seasonal
changes in dynamics and moisture sources change the ET-P and
δD_004 relationship. We quantify this uncertainty as the root-
mean square (RMS) difference between the iCAM ET-P simula-
tion and the ET-P derived from the ET-P and δD_004 relation-
ships from iCAM (i.e., the residual standard deviation of the
regressions shown in Fig. 2b). Because the uncertainty in the
AIRS deuterium data is relatively small for monthly averages (~4
per mil)30, the primary source of scatter in Fig. 2b is likely the
variable sources of ET and precipitation or the isotopic physics
used in iCAM. However, other processes not well modeled by

Fig. 1 The diagram of water vapor and δD (δD_004) dynamics. a The processes influencing δD_004 variability, shown on a plot of water vapor volume
mixing ratio (y-axis) versus δD (x-axis). For a constant water vapor volume mixing ratio (4mmol mol−1, flat gray line labeled “Reference VMR”), variations
in the hydrogen isotope ratio (δD_004, shown in the Figure as δD004) represent the shifting importance of precipitation vs. evapotranspiration (ET-P). The
precise scaling of δD_004 to ET-P will be modified by the efficiency of rainout (i.e., the efficiency with which cloud condensate is converted to rain) and by
the source of moisture to the atmosphere. For example, the two-sided black arrow shows the expected range of δD_004 if oceanic evaporation is the sole
source of moisture to the atmosphere (blue line) and condensate formed during convection is immediately removed from the atmosphere by precipitation
(red line). The intersection of the blue and red lines with the “Reference VMR” line explicitly shows the expected δD_004 values if P= 0 or ET= 0,
respectively. As the contribution of transpiration to atmospheric moistening increases (green line), the δD_004 range will extend to the right, causing the
expected δD_004 value to be higher when P= 0. Contrastingly, as either rain evaporation (purple dashed line) or remote moisture convergence (orange
line) becomes important, the δD_004 range will extend to lower isotope ratios, causing the expected δD_004 value to be lower when ET= 0. Decreasing
the efficiency with which condensate forms precipitation (pink dotted line) will, in comparison, increase the expected δD_004 value when ET= 0, limiting
the expected δD_004 range for a given set of ET-P states. b The schematic illustrates the key processes in (a).

Fig. 2 The regressions of ET-P on δD_004 from both observations and iCAM. a represents the regressions of TWS/discharge on AIRS δD_004 and b
represents the regressions of ET-P on δD_004 from iCAM during 2013–2015. Here, we use observations and iCAM output at a monthly time scale. Basins
close to the Atlantic are river basins 1, 3, 10, and 12 from Fig. 3b; basins in the Northwest are basins 5, 8, 9,13, and 14; basins in the Southeast are basins 2,
4, 6, 7, and 11. For each region, we calculate the area-weighted average of ET-P from TWS/discharge, AIRS δD_004, and ET-P and δD_004 from iCAM for
all months during 2003–2015. Here, the region comprised of basins close to the Atlantic has a higher slope than the other regions, according to both the
observations and iCAM, indicating a different moisture source.
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Normalizing tropospheric deuterium observations to a single tropospheric “water” value will allow the 
deuterium to reflect variations in water balance (ET – P) as it removes variations in q, the dominant factor 
affecting deuterium content variability
Bailey et al. (JGR 2017) Shi et al. (Nat. Com 2022)

However, other processes and sources (e.g. changes in precipitation efficiency, rainfall recycling 
and change between oceanic and transpiration source) also affect normalized deuterium proxy



expect a linear relationship between δD_004 and ET-P and (2)
quantify uncertainties in our method of using regressions of
TWS/discharge and AIRS δD_004 at river-basin scales to estimate
ET-P across the Amazon. Figure 2b shows ET-P versus δD_004 in
iCAM for the same regions shown in Fig. 2a. As with the
observed relationships between AIRS δD_004 and TWS/dis-
charge, the modeled relationships are linear (correlation coeffi-
cients of 0.84 or higher) for the wet Amazon. However, observed
ET-P is largely negative throughout the year over the wet tropics
(i.e., in river basins close to the Atlantic and in northwestern
Amazon), whereas iCAM has ET-P being positive for ~1/3 of the
year. Because of these large differences, we cannot use iCAM as a

way to calibrate the δD_004 proxy. Instead, we use the iCAM
model to evalute uncertainties in the proxy and whether seasonal
changes in dynamics and moisture sources change the ET-P and
δD_004 relationship. We quantify this uncertainty as the root-
mean square (RMS) difference between the iCAM ET-P simula-
tion and the ET-P derived from the ET-P and δD_004 relation-
ships from iCAM (i.e., the residual standard deviation of the
regressions shown in Fig. 2b). Because the uncertainty in the
AIRS deuterium data is relatively small for monthly averages (~4
per mil)30, the primary source of scatter in Fig. 2b is likely the
variable sources of ET and precipitation or the isotopic physics
used in iCAM. However, other processes not well modeled by

Fig. 1 The diagram of water vapor and δD (δD_004) dynamics. a The processes influencing δD_004 variability, shown on a plot of water vapor volume
mixing ratio (y-axis) versus δD (x-axis). For a constant water vapor volume mixing ratio (4mmol mol−1, flat gray line labeled “Reference VMR”), variations
in the hydrogen isotope ratio (δD_004, shown in the Figure as δD004) represent the shifting importance of precipitation vs. evapotranspiration (ET-P). The
precise scaling of δD_004 to ET-P will be modified by the efficiency of rainout (i.e., the efficiency with which cloud condensate is converted to rain) and by
the source of moisture to the atmosphere. For example, the two-sided black arrow shows the expected range of δD_004 if oceanic evaporation is the sole
source of moisture to the atmosphere (blue line) and condensate formed during convection is immediately removed from the atmosphere by precipitation
(red line). The intersection of the blue and red lines with the “Reference VMR” line explicitly shows the expected δD_004 values if P= 0 or ET= 0,
respectively. As the contribution of transpiration to atmospheric moistening increases (green line), the δD_004 range will extend to the right, causing the
expected δD_004 value to be higher when P= 0. Contrastingly, as either rain evaporation (purple dashed line) or remote moisture convergence (orange
line) becomes important, the δD_004 range will extend to lower isotope ratios, causing the expected δD_004 value to be lower when ET= 0. Decreasing
the efficiency with which condensate forms precipitation (pink dotted line) will, in comparison, increase the expected δD_004 value when ET= 0, limiting
the expected δD_004 range for a given set of ET-P states. b The schematic illustrates the key processes in (a).

Fig. 2 The regressions of ET-P on δD_004 from both observations and iCAM. a represents the regressions of TWS/discharge on AIRS δD_004 and b
represents the regressions of ET-P on δD_004 from iCAM during 2013–2015. Here, we use observations and iCAM output at a monthly time scale. Basins
close to the Atlantic are river basins 1, 3, 10, and 12 from Fig. 3b; basins in the Northwest are basins 5, 8, 9,13, and 14; basins in the Southeast are basins 2,
4, 6, 7, and 11. For each region, we calculate the area-weighted average of ET-P from TWS/discharge, AIRS δD_004, and ET-P and δD_004 from iCAM for
all months during 2003–2015. Here, the region comprised of basins close to the Atlantic has a higher slope than the other regions, according to both the
observations and iCAM, indicating a different moisture source.
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• Linear relationship expected between normalized deuterium (dd_004) and E-P from both model (ICAM) and data 
(comparison to GRACE and river discharge). 

• Evaluation of model shows that change in slope in different location reflects distribution of moisture sources whereas 
the scatter reflects the seasonal variation in moisture source.

Shi et al. (Nat. Com 2022)



(a) (b)

NE. Amazon ET – P Based on Deuterium primarily depends on local ET-P in both the model and by comparing 
against GPCP and JPL-PT ET

Shi et al. (Nat. Com 2022)



(a) (b)

S. Amazon ET – P Based on Deuterium depends on local ET-P AND Advected Moisture from N. Amazon



N. Basins show good seasonal agreement between Deuterium/Atmosphere Based Water Balance and Terrestrial 
Water Balance à Large observed seasonality in ET affects terrestrial and atmosphere water balance

iCAM could also affect the scatter; these include variations in
cloud microphysical processes and changes in the depth of con-
vection resulting in variations in moisture flux convergence
(Fig. 1). All these processes are discussed in the “Methods” and
are shown to have a negligible impact on the precision of the
deuterium-based ET-P estimates from AIRS. The scatter shown
in Fig. 2b represents the uncertainty on the seasonal variability of
the δD_004-based ET-P estimates. The overall accuracy is
bounded by the TWS/discharge measurements as discussed next.

Accuracy of ET-P Estimates. We estimate the accuracy of the ET-
P estimates based on the AIRS δD_004 data as the RMS error in
the fit between the monthly based TWS/discharge versus AIRS
δD_004 estimates of ET-P and TWS/discharge suggested ET-P. We
use TWS/discharge for this purpose because GRACE TWS is
precision limited at river-basin scales and its uncertainties have
been quantified in the literature10. The accuracy is shown in
Table 1 for five groups of river basins described in the “Methods”.
We assess the accuracy through comparisons with different ET-P
esimates derived from different ET and precipitation remote sen-
sing and reanalysis products (“Methods”; Table S2). Results from
Group 1, composed of river basins 3, 10, and 12 (which are shown
in Fig. 3b and named in Table S1), are discussed as an example,
because these three basins do not have any missing values for the
river discharge measurements during 2003–2015. We find that the
RMS errors in the fit between the ET-P estimates derived from

different moisture flux products and AIRS δD_004 are generally
larger but within a factor of two of the RMS errors in the fit derived
from TWS/discharge and AIRS δD_004 (Table S2). This suggests
that our choice of using TWS/discharge data to calibrate the AIRS
δD_004 proxy and our estimate of its accuracy are reasonable.

Seasonality of ET-P based on δD_004 measurements. Figure 3a
shows the monthly average AIRS δD_004-based ET-P estimates
from Group 1, which is composed of river basins 3, 10, and 12
(Fig. 3b and Table S1). We compare these estimates to (1) ET-P
from TWS/discharge, (2) eight other ET-P estimates calculated
from the same moisture flux products used for assessing accuracy
in Table S2, (3) an ET-P estimate using the regression coefficients
from the TWS/discharge–δD_004 comparison, and (4) a similar
ET-P estimates using AIRS δD_004 versus the mean of the eight
other ET-P calculations from Table S2. The pink shading
describes the uncertainty in the deuterium-based ET-P variability;
as discussed earlier, this uncertainty is calculated using the iCAM
simulations. Across all five groups of river basins (defined in the
“Methods”), the uncertainties range from ~32 to 41mm month−1

(Table 2). We find that the seasonality of the deuterium-based
ET-P estimates agrees best with the ET-P obtained from TWS/
discharge; however, noticeable differences are seen in the early
and late part of the wet season (December and May). The com-
parisons demonstrate that the deuterium-based ET-P estimates
can resolve monthly variations in ET-P26–28.

Table 1 The regression coefficient and standard error of the regression coefficient, intercept, correlation coefficient, and the
root-mean square (RMS) error in the fit (mm month−1) between ET-P and δD_004 in the 5 river basin groups: Group 1 (basins 3,
10 and 12), Group 2 (basins 1, 13, and 14), Group 3 (basins 5, 8, and 9), Group 4 (basins 4, 6, and 11), and Group 5 (basins 2
and 7).

Group number Regression coefficient ± standard error of the regression coefficient Intercept Correlation coefficient Error in the fit (mm month−1)
1 2.62 ± 0.13 353.60 ± 23.06 0.85 43.11
2 1.66 ± 0.09 172.67 ± 17.60 0.84 35.86
3 1.91 ± 0.12 239.62 ± 21.86 0.82 54.86
4 1.91 ± 0.12 258.93 ± 19.99 0.80 52.89
5 2.86 ± 0.20 383.40 ± 32.08 0.78 77.85

The calculations are based on ET-P estimated with GRACE TWS and river discharge (TWS/discharge; mm month−1) and δD_004 (per mil) from AIRS during 2003–2015.

Fig. 3 The seasonality of evapotranspiration minus precipitation (ET-P) in one of the Amazon sub-basin groups and the Amazon basin distribution.
a The seasonality of ET-P is from different ET and P data sources, TWS/discharge, and ET-P estimates based on AIRS δD_004 for the geographic area
composed of river basins 3, 10, and 12 (Group 1; “Methods”) during 2003–2015. Panel b shows the river basin distribution map for the Amazon. In a, we
use area-weighted averaging. We use two ET sources; one is from PT-JPL ET, the other is the latent heat flux of ERA5. We also use four precipitation
products: TRMM, GPCP, PERSIANN, and CRU. Other monthly data products include terrestrial water storage (TWS) from GRACE, river discharge from
Amazon river gauge measurements, and ET-P derived from AIRS δD_004. “ET-P Estimation” is the ET-P estimate from AIRS δD_004 based on the
regression against TWS/discharge. “ET-P Estimation with Mean” is an alternative estimate of ET-P from AIRS δD_004 based on regressing the isotopic
data against the average ET-P derived from the eight combinations of remote-sensing and reanalysis moist flux products. The pink shading represents the
suggested error in the fit between monthly ET-P and δD_004 from iCAM.
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S. Basins seasonal atmosphere water balance strongly depends on transported moisture, consistent with Staal et al. 2018 
and Wright et al. 2019
Little seasonality in ET at surface but large contribution of ET to atmospheric based water balance



Interannual variability of water balance co-varies with precipitation for four 
quadrants in S. American Tropics (NE, NW, SE, and SW regions)

What controls inter-annual variability of S. American tropical forest water balance?

iCAM could also affect the scatter; these include variations in
cloud microphysical processes and changes in the depth of con-
vection resulting in variations in moisture flux convergence
(Fig. 1). All these processes are discussed in the “Methods” and
are shown to have a negligible impact on the precision of the
deuterium-based ET-P estimates from AIRS. The scatter shown
in Fig. 2b represents the uncertainty on the seasonal variability of
the δD_004-based ET-P estimates. The overall accuracy is
bounded by the TWS/discharge measurements as discussed next.

Accuracy of ET-P Estimates. We estimate the accuracy of the ET-
P estimates based on the AIRS δD_004 data as the RMS error in
the fit between the monthly based TWS/discharge versus AIRS
δD_004 estimates of ET-P and TWS/discharge suggested ET-P. We
use TWS/discharge for this purpose because GRACE TWS is
precision limited at river-basin scales and its uncertainties have
been quantified in the literature10. The accuracy is shown in
Table 1 for five groups of river basins described in the “Methods”.
We assess the accuracy through comparisons with different ET-P
esimates derived from different ET and precipitation remote sen-
sing and reanalysis products (“Methods”; Table S2). Results from
Group 1, composed of river basins 3, 10, and 12 (which are shown
in Fig. 3b and named in Table S1), are discussed as an example,
because these three basins do not have any missing values for the
river discharge measurements during 2003–2015. We find that the
RMS errors in the fit between the ET-P estimates derived from

different moisture flux products and AIRS δD_004 are generally
larger but within a factor of two of the RMS errors in the fit derived
from TWS/discharge and AIRS δD_004 (Table S2). This suggests
that our choice of using TWS/discharge data to calibrate the AIRS
δD_004 proxy and our estimate of its accuracy are reasonable.

Seasonality of ET-P based on δD_004 measurements. Figure 3a
shows the monthly average AIRS δD_004-based ET-P estimates
from Group 1, which is composed of river basins 3, 10, and 12
(Fig. 3b and Table S1). We compare these estimates to (1) ET-P
from TWS/discharge, (2) eight other ET-P estimates calculated
from the same moisture flux products used for assessing accuracy
in Table S2, (3) an ET-P estimate using the regression coefficients
from the TWS/discharge–δD_004 comparison, and (4) a similar
ET-P estimates using AIRS δD_004 versus the mean of the eight
other ET-P calculations from Table S2. The pink shading
describes the uncertainty in the deuterium-based ET-P variability;
as discussed earlier, this uncertainty is calculated using the iCAM
simulations. Across all five groups of river basins (defined in the
“Methods”), the uncertainties range from ~32 to 41mm month−1

(Table 2). We find that the seasonality of the deuterium-based
ET-P estimates agrees best with the ET-P obtained from TWS/
discharge; however, noticeable differences are seen in the early
and late part of the wet season (December and May). The com-
parisons demonstrate that the deuterium-based ET-P estimates
can resolve monthly variations in ET-P26–28.

Table 1 The regression coefficient and standard error of the regression coefficient, intercept, correlation coefficient, and the
root-mean square (RMS) error in the fit (mm month−1) between ET-P and δD_004 in the 5 river basin groups: Group 1 (basins 3,
10 and 12), Group 2 (basins 1, 13, and 14), Group 3 (basins 5, 8, and 9), Group 4 (basins 4, 6, and 11), and Group 5 (basins 2
and 7).

Group number Regression coefficient ± standard error of the regression coefficient Intercept Correlation coefficient Error in the fit (mm month−1)
1 2.62 ± 0.13 353.60 ± 23.06 0.85 43.11
2 1.66 ± 0.09 172.67 ± 17.60 0.84 35.86
3 1.91 ± 0.12 239.62 ± 21.86 0.82 54.86
4 1.91 ± 0.12 258.93 ± 19.99 0.80 52.89
5 2.86 ± 0.20 383.40 ± 32.08 0.78 77.85

The calculations are based on ET-P estimated with GRACE TWS and river discharge (TWS/discharge; mm month−1) and δD_004 (per mil) from AIRS during 2003–2015.

Fig. 3 The seasonality of evapotranspiration minus precipitation (ET-P) in one of the Amazon sub-basin groups and the Amazon basin distribution.
a The seasonality of ET-P is from different ET and P data sources, TWS/discharge, and ET-P estimates based on AIRS δD_004 for the geographic area
composed of river basins 3, 10, and 12 (Group 1; “Methods”) during 2003–2015. Panel b shows the river basin distribution map for the Amazon. In a, we
use area-weighted averaging. We use two ET sources; one is from PT-JPL ET, the other is the latent heat flux of ERA5. We also use four precipitation
products: TRMM, GPCP, PERSIANN, and CRU. Other monthly data products include terrestrial water storage (TWS) from GRACE, river discharge from
Amazon river gauge measurements, and ET-P derived from AIRS δD_004. “ET-P Estimation” is the ET-P estimate from AIRS δD_004 based on the
regression against TWS/discharge. “ET-P Estimation with Mean” is an alternative estimate of ET-P from AIRS δD_004 based on regressing the isotopic
data against the average ET-P derived from the eight combinations of remote-sensing and reanalysis moist flux products. The pink shading represents the
suggested error in the fit between monthly ET-P and δD_004 from iCAM.
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De-Seasonalized Precipitation and Water Balance



Is Water Balance in the Amazon changing during the 21rst Century?

TRMM / GPM

Decadal Changes in Water balance are smaller than observed precipitation indicating substantial role of ET 
in controlling changes in Amazon water balance during the 21rst century

 Change in P - ET (2012-2016) - (2003-2011)
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ET may be responding to both changes in P (supply)  in N. Tropics and changes in VPD (demand) in S. Tropics

 Change in VPD (2012-2019) - (2003-2011)
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AIRS VPD

TRMM / GPM

S. Amazon VPD is increasing à Increased ET? 
But we might expect WUE to increase during same time period à Decreased ET?



Decline in N. Amazon rainfall primarily driven by 2015 ENSO.
ET is less variable and showing decline primarily related to change in water balance in 2003 and 2004

Decline in ET is ~7.1 +/- 4.0 mm/mo and 5.5 +/- 3.2 mm/mo in NE and NW basins respectively corresponding to 
decline in rainfall



Larger than expected decline in water balance from both declining rainfall and increasing ET in SE Amazon
No observed changes in water balance or its components in SW Amazon

Increase in (SE) ET is ~4.95 +/- 4.3 mm/mo
Decrease in (SE) Rainfall is 3.48 +/- 5.0 
Expected increase in ET from VPD alone is between 1 to 5 mm/mo depending on model but confounding factors 
include change in WUE and P and dependency of SE atmospheric water balance to advected moisture



Summary / Conclusions / Questions
We use Satellite-based Tropospheric deuterium measurements to estimate Spatio-temporal distribution of Amazon 
Water Balance
N. Amazon atmospheric (deuterium based) water balance consistent with surface based water balance
S. Amazon atmospheric water balance depends on local + advected moisture

What controls interannual to decadal changes in Amazon water balance?
1) Precipitation is the dominant control on water balance inter-annual and decadal variability across the basin
2) Decadal changes in Water Balance likely (~1 sigma) different than that of Precipitation across the Amazon

3) Decline in ET in N. Amazon corresponding to rainfall decline
4) Slight increase in ET in SE Amazon possibly related to increases in VPD
5) We cannot obviously resolve different effects of changing Temperature, VPD and WUE on Amazon water balance

Need à
There does not appear to be good literature (or prior knowledge) on the distribution of processes controlling water 
balance and ET in the Amazon, any suggestions on how to frame these results on water balance?

Many of the river discharge results cutoff in 2014 / 2016 à challenging to compare to basin scale changes during these 
time periods à any expectations river discharge measurements will resume?


