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Why?

- Less sample data

    - Faster learning curve

    - More accurate results
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Point cloud characteristics - some examples

MACS | 10-20 pts/m²

Sony E CMOS | ~4000 pts/m²

LiBackpack DGC50 | 2000-15000 pts/m²

Riegl LMS Qi680 | 4 - 10 pts/m² [6]

LIVOX AVIA | 200 - 2000 pts/m²

Area   Details   Cost

Background
Our goal is to develop an automated segmentation process that is 
efficient and accurate, and most importantly applies to point clouds 
of high variety of characteristics. Thereby we want to answer the 
following research questions:

1) How can we speed up the time consuming labeling process?

2) Can transfer learning lead to accurate results?

3) To what level of detail can we segment and classify our data?

Aim | Research questions
Point clouds provide valuable insights into the change of 
Arctic and boreal ecosystems, resulting in a surge of point 
cloud acquisition in high latitude regions using various 
sensors and methods (e.g. LiDAR and SfM). This in turn 
leads to point clouds with a variety of characteristics. 
However, analyzing these point clouds requires time-
consuming segmentation and classification, often involving 
manual correction. With the large amount of data sets, 
automated segmentation and classification become 
necessary. 
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Towards an automatic segmentation 
and classification of multi-source point 
clouds for Arctic to boreal permafrost 
ecosystem analysis

Input features

Classified Point cloud

Identified single trees

Training & Test Set:
- sample area size: 10x10m
- Nr of samples: 20 per Sensor (140)
- countries: USA, CA, RU, FI, NW
- landscapes: tundra - open forest - closed forest

Exemplary dataflow Potentials of the processed 
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- terrain: Cloth Simulation Filter by Zhang  
  et al. (2016)
- high vegetation: 
  chm creation with pitfree after
  Khosravipour et al. (2014),
  tree segmentation after Dalponte& Comes 
  2016
- low vegetation: non-classified points

intensity

norm height

RGB

height norm: 
Delaunay triangulation

- Input for forest structure modelling (LAVESI)

- Biomass derivation

- Species detection

- Subsidence tracking

- Permafrost thaw feature detection

- Erosion quantification

- Hydrological modelling 

- Drunken forest analysis  

Model
adaptations

terrain

low vegetation

high vegetation

Terrain analysis...

3

5

5

sg27 station5 [4]

correspondence:
veronika.doepper@awi.de

References
[1] Dalponte, M. and Coomes, D. A. (2016), Tree-centric mapping of forest carbon density 
from airborne laser scanning and hyperspectral data. Methods Ecol Evol, 7: 1236–1245. doi:
10.1111/2041-210X.12575.
[2] Khosravipour, A., Skidmore, A. K., Isenburg, M., Wang, T., & Hussin, Y. A. (2014). 
Generating pit-free canopy height models from airborne lidar. Photogrammetric Engineering & 
Remote Sensing, 80(9), 863-872.
[3] Thomas, Hugues, et al. "Kpconv: Flexible and deformable convolution for point clouds." 
Proceedings of the IEEE/CVF international conference on computer vision. 2019.
[4] Hackel, Timo, et al. "Semantic3d. net: A new large-scale point cloud classification 
benchmark." arXiv preprint arXiv:1704.03847 (2017)
[5] Luo, Haifeng, et al. "Individual tree extraction from urban mobile laser scanning point 
clouds using deep pointwise direction embedding." ISPRS Journal of Photogrammetry and 
Remote Sensing 175 (2021): 326-339
[6] Anders, Katharina; Antonova, Sofia; Boike, Julia; Gehrmann, Martin; Hartmann, Jörg; 
Helm, Veit; Höfle, Bernhard; Marsh, Philip; Marx, Sabrina; Sachs, Torsten (2018): Airborne 
Laser Scanning (ALS) Point Clouds of Trail Valley Creek, NWT, Canada (2016). PANGAEA, 
https://doi.org/10.1594/PANGAEA.894884, Supplement to: Antonova, Sofia; Thiel, Christian; 
Höfle, Bernhard; Anders, Katharina; Helm, Veit; Zwieback, Simon; Marx, Sabrina; Boike, Julia 
(2019): Estimating tree height from TanDEM-X data at the northwestern Canadian treeline. 
Remote Sensing of Environment, 231, 111251, https://doi.org/10.1016/j.rse.2019.111251.

Riegl.com

c Riegl.com

c Greenvalley


