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Introduction : Wind is a clean and renewable energy source that has the potential to significantly contribute to the electricity supply in urban areas. Electricity generation through Micro Wind Turbines (MWTs) in an urban setting is not often implemented given their expected low
performance due to low wind speed. However, accurate positioning of wind turbines can often result in a satisfactory performance.

In the present work, a framework is detailed to assess the wind energy potential of an urban neighborhood using Computational Fluid Dynamics (CFD) anc
District. Assessing the wind energy potential of an urban area requires knowledge of local wind properties (speed, direction, turbulence) to a high spatial reso
and aid in an accurate assessment of the wind energy potential. By using CFD, it is possible to accurately predict the wind speed, direction and turbulence wit

Methodology :

Step 1 : Statistical analysis of meteorological wind data
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Step 2 : Wind simulations with CFD [1,2,3]

° Mesh size - 52 million cells
° Solver - Steady-state, incompressible, FVM based
solver (OpenFOAM v7)

e Turbulence model - Modified k-w SST RANS model
with improved ABL formulations [4]

Step 3 : Generation of approximate local Weibull velocity distributions for each
direction
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Step 4 : Generation of local power probability distribution for a specific turbine
and integration of the distribution to get Annual Energy Potential (AEP)
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Results :

Rated Power

applied to the Northern District of Brussels, Belgium, a neighborhood that has the ambition to become a Positive Energy
ution, as conditions even on a single roof are not uniform. CFD is a powerful tool that can be used to discern wind patterns
nin an urban landscape, taking into account the effects of buildings, terrain and other structures

1.5 kW

Rated Wind speed

12m/s (27 mph)

Cut-in Wind speed

3 m/s (6.7 mph)

Cut-out Win(_I speed 20 m/s (44 mph)
Survival Wind speed 50 m/s (110 mph)
Rated RPM 200 RPM

Noise at |2m/s 41 dB

Height 3.2 m (10.6 ft)
Width 1.8 m (5.1 f)
Weight 274 kg (603 Ibs)
Swept Area 5.76 m? (62 ft?)
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Conclusions:

e With CFD it was possible to clearly identify roofs with high wind energy potential

e AEP showed high variability even on a single continuous roof, thus allowing accurate

placement of wind turbines for maximum yield

Further studies :
° More refined geometry for the buildings with rooftops of high AEP
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° Multiple simulations per direction to obtain more accurate fit of local velocity distribution

° Extend the analysis to include more neighbourhoods
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