

Ice shelf-ocean interaction at shallow depths needs more attention

Ole Richter, Ben Galton-Fenzi, David Gwyther, Kaitlin Naughten, Ralph Timmermann, Verena Haid

Modelled Antarctic ice shelf basal melting at high resolution

- Novel high resolution ocean model captures many of the small ice shelves
- Elevated melt rates towards the ice shelf front everywhere!
- Accumulates to substantial mass loss from shallow depths
- Artificial?

Satellite-derived depth distribution

- Previously published satellite-derived melt rates from Adusumilli et al. 2020 (2010-2018 mean)
- Highest melt rates at greatest depths, but ...
- 60% of total mass loss comes from depths shallower than 500m!
- Due to large areas at these depths (and refreezing of deep melt?).

 \rightarrow Model and satellite-methods agree that most mass is lost from shallow depths!

Satellite-derived Antarctic ice shelf area, mean melt rate and mass loss at different depths

Richter et al. in prep.

Limitations

- In-situ observations highlight elevated melt towards the ice front
- Satellite methods poorly resolve calving regions
- Melting along submarine parts of calving face could be substantial too:

e.g. Assuming 50 m/yr leads to 20% of total horizontal mass loss!

Annual mean basal melt rate under Ross Ice Shelf from Ice-Penetrating Radar

Stewart et al. 2019

→Limitations only support our argument!

The importance of shallow ice mass loss

- Predictions of global oceans and climate are sensitive to net freshwater flux
 - Southern ocean surface freshening
 - Sea ice thickening
 - Slow down of AABW formation
 - Changes in global precipitation pattern
 - ...
- Glacial melt water can offset polynya activity in observations and regional models
 - Delay in bottom water formation (Prydz Bay, e.g. Aoki et al. 2022)
 - Support of deep warm water intrusions (Sabrina Coast, Amundsen Sea; Silvano et al. 2018)

 \rightarrow Net melt water leaving the cavity matters for regional/global oceans and climate!

Antarctic melt water induced precipitation anomaly

How about ice sheet evolution?

- Ice around deep grounding lines is often very valuable for buttressing
- Still, diagnostic ice sheet flow modelling shows:

30% of the current buttressing importance comes from ice shallower than 500m!

- Transient idealised experiments highlight importance of shallow melting
 - Ice shelf shape (Nakayama et al. 2022)
 - Cumulative buttressing (Feldmann et al. 2022)

 \rightarrow Shallow melting should not be neglected in future studies of ice sheet evolution.

Oceanic drivers and expected future change

- Solar heated surface water intrusions known to play a role in shallow regions (Mode 3)
- Model projections indicate broad loss of sea-ice cover until 2100!
- Other important processes could be:
 - Winter water layer protection (Padman et al. 2012)
 - Tidal vertical mixing of deep heat (Richter et. al 2022)
 - Feedbacks with biology ?
 - o ..

→ Response to climate change might be very different compared to the one at depth.

Interannual melt rate variability in different regions

Model intercomparison

- Three experiments:
 - FESOM-Z (multiyear mean)
 - FESOM-sigma (equivalent FESOM-Z)
 - WAOM (sigma, 2007 snapshot)
- Choice of vertical coordinate impacts predicted shallow ice mass loss.
- Sigma models show higher mass loss and melt rates towards the front.
- Supports enhanced Mode 3 melting in sigma coordinates
- Which model is more accurate is not clear:
 - Wedge mechanism (Malyarenko et al. 2019)!

 \rightarrow Better understanding of frontal processes and model evaluation very much needed.

Depth distribution of modelled Antarctic ice shelf mean melt rate, mass loss and area

The role of the ice front representation

- Sigma-coordinates necessitate smoothing of the ice front geometry
- This might support surface water intrusion and explain elevated frontal melt in sigma models
- Additional experiment to isolate geometric effects:
 - FESOM-Z with sigma-like front (pseudo-sigma)
- Frontal smoothing explains only a small part of the differences
- \rightarrow It's more complicated than "just" geometry

Melt rate depth distribution from the three experiments

Summary

- Antarctic ice shelves lose most of their mass from shallow depths (at least 60% from 500m and shallower)
- Climate predictions are sensitive to net freshwater flux
- Some evidence that shallow ice melting also matters for ice sheet evolution
- Vertical coordinate system in models impacts melting at shallow depths
- Oceanic drivers of shallow ice melting are not well quantified, but might respond rapidly to climate change

 \rightarrow Future research into Antarctic ice shelf-ocean interaction should be more balanced between deep and shallow processes.