

Characterization of Mediterranean large-scale atmospheric circulation based on Jenkinson-Collison Weather Type classification. Juan Antonio Fernández-Granja¹, Ana Casanueva^{2,3,} Joaquín Bedia^{2,3}, Swen Brands^{1,4}, and Jesús Fernández¹

¹Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain ²Departamento de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Santander, Spain ³Grupo de Meteorología y Computación, Universidad de Cantabria, Unidad Asociada al CSIC, Santander, Spain ⁴MeteoGalicia, Consellería de Medio Ambiente, Territorio y Vivienda - Xunta de Galicia, Santiago de Compostela, Spain

1. INTRODUCTION

- The European climate is affected by large-scale anomalous situations operating at multiple scales (Soares et al., 2018), such as teleconnection indices (i.e. NAO, SCAND or EA) or atmospheric blocking situations.
- The evaluation of new generations of global climate models (GCMs) with respect to their large-scale circulation features is crucial for model development and has also been brought into focus by the downscaling community, interested in the suitability of GCMs for downscaling purposes.
- Weather typing techniques are a useful tool to classify the full diversity of synoptic situations into a few recurrent patterns that can serve as objective characterizations of either global or regional atmospheric circulation. A well-known weather typing classification algorithm is the Jenkinson-Collison Weather Type (JC-WT, Jenkinson and Collison, 1977) approach.
- We assess the ability of the JC-WT classification to characterize the low-level spatiotemporal signature of the large-scale major modes of atmospheric variability relevant for Europe, and its seasonal variation.

2. METHODS AND DATA

- Jenkinson-Collison Weather Type (JC-WT): 6-hourly catalogue derived from ERA-Interim reanalysis, openly available on Zenodo (Fernández-Granja et al., 2021). We considered the latitudinal band 20°N - 80°N, 1979-2005 (Fig. 1)
- Blocking Index (BI): Jury et al. (2019). Calculated using Z500 from ERA-Interim, 1981-2005. 3 different BI series, one for each region (ATL, EUR and RUS, see "purple" polygons from Fig. 2a).
- Teleconnection indices North Atlantic Oscillation (NAO), Scandinavian pattern (SCAND) and East Atlantic pattern (EA): Derived from Z500, 1979-2005. Monthly series for the main teleconnection indices affecting Europe retrieved from the NOAA Climate Prediction Center

(https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml).

Fig. 1: Composite SLP maps (hPa) and isobars for the different JC-WTs for a classification centered over south-western Europe (40∘N, 10∘W).

3. RESULTS

JC-WT with the most frequent type at a given grid-box of the Northern Hemisphere conditioned on blocking events (Fig. 2a):

- A zonal circumpolar belt is located at mid-to-high latitudes over the continents and shifting southward to the sub-tropics over the ocean areas.
- frequency.
- with a confidence level of 95 %.

JC-WT yielding the highest positive Pearson correlation coefficient with the NAO, SCAND and EA (Fig. 2b):

- British Isles with extended opposite anomalies over subtropical areas.
- (active in JJA).
- Seasonal teleconnection patterns shifts are also captured by the JC-WT.
- White hatching hides grid points with non-significant correlation for a confidence level of 95%.

Fig. 2a: Sensitivity of JC-WT classification to blocking events.

• Purely anticyclonic (A) type is most frequent at the blocking centre (see "purple" polygons) in all cases (ATL, EUR and RUS) of blocking conditioning.

• Frequency of annual A type conditioned on the different blocking situations increases to 32, 38 and 38% of days for ATL, EUR and RUS, respectively, from marginal frequencies (all around 14-20% of days, not shown). Seasonal relative frequencies of A and C types under normal and blocking conditions are compared in Fig. 3. It can be observed an increase in A type seasonal frequency and a decrease in C type seasonal

• White hatched pixels exhibit frequencies that are not significantly different from the "not conditioned" frequency after two-sided Z-test of proportions

• JC-WT classification exhibits a remarkable sensitivity to the typical dipole structure of NAO and SCAND patterns and the EA monopole west of the

o In general, typical global patterns and links of the three teleconnection indices are captured by the JC-WT, in addition to some previously undocumented relationships, i.e. an association between cyclonic circulation types in the western Sahara desert and the SCAND index (active in DJF and JJA), or a dipole of cyclonic types in the Bering and Arctic Seas, contrasted by anticyclonic types in the subtropical central North Pacific

Fig. 2b: Sensitivity of JC-WT classification to teleconnection patterns.

Fig. 3: Unconditioned monthly frequencies (green line) of culation types A (purely anticyclonic, upper row) and C (purely cyclonic, lower row) as compared to their blocking-conditioned frequencies (blue line) for ATL, EUR and RUS ubdomains (left. center and right columns respectively) Frequencies calculated for the period 1981-2005. Frequencies are relative to ne maximum in each panel. indicated in the corresponding

4. CONCLUSIONS

• Our findings underline the potential of the JC-WT classification in detecting the imprint of the main modes of atmospheric low-frequency variability on the regional near-surface circulation.

SIC US i F

- JC-WTs significantly correlate with the monthly-averaged main modes of low-frequency variability (which have their imprint on the geopotential in the mid-troposphere) and capture a dedicated blocking index.
- JC-WTs reproduces well known teleconnection areas, and, to the authors' knowledge, it also reveals some previously undocumented relationships.
- For each large-scale configuration, a spatially and temporally coherent regional signature is obtained in the form of easily interpretable types.

5. REFERENCES AND ACKNOWLEDGEMENTS

- Bedia, J., Brands, S., Casanueva, A., Fernández, J. 2021. Global Extra-tropical Circulation Database based on the Jenkinson-Collison Classification calculated with 6-hourly mean sea-level pressure fields from various reanalysis datasets (1.0.0-alpha) [Data set]. Zenodo, DOI: 10.5281/zenodo.5761258.
- Jenkinson, A., Collison, F., 1977. An Initial Climatology of Gales over the North Sea. Technical Report 18. Meteorological Office. Bracknell, UK
- Jury, M.W., Herrera, S., Gutierrez, J.M., Barriopedro, D., 2019. Blocking representation in the ERA-Interim driven EURO-CORDEX RCMs. Climate Dynamics 52, 3291-3306, DOI: 10.1007/s00382-018-4335-8.
- Soares, P.M.M., Maraun, D., Brands, S., Jurv, M.W., Gutiérrez, J.M., San Martín, D., Hertig, E., Huth, R., Belusić Vozila, A., Cardoso, R.M., Kotlarski, S., Drobinski, P., Obermann-Hellhund, A., 2018. Process-based evaluation of the VALUE perfect predictor experiment of statistical downscaling methods. International Journal of Climatology 39, 3868–3893. DOI: 10.1002/joc.5911.

We thank our colleague Sixto Herrera for sharing the Blocking Index Database used in this study and the NOAA Climate Prediction Center for making publicly available the monthly teleconnection indices.

Funding

JAF: Project ATLAS (PID2019-111481RB-I00), and grant PRE2020-094728 funded by MCIN/AEI/10.13039/501100011033 and ESF investing in your future. AC: Project COMPOUND (TED2021-131334A-I00) funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR. SB: European Commission NextGenerationEU (Regulation EU 2020/2094), through CSIC's Inter-disciplinary Thematic Platform Clima (PTI Clima) "Development of Operational Climate Services"

JF: European Union's Horizon Europe research and innovation programme under grant agreement No 101081555 (IMPETUS4CHANGE).

juan.fernandez@unican.es 🜐 https://www.researchgate.net/profile/Juan-Antonio-Fernandez-Granja