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Objectives

?
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Storage
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Need predictive model for ungauged basins (Blöschl et al., 2019) 

representing processes at the hillslope/catchment scale (Fan et al., 2019)

K hydraulic conductivity [m/s]

θ porostiy [%]

Estimation of the aquifer
hydraulic properties

∙ Lack of data heavy to deploy: streamflow (Cornette et al., 2022)

∙ Sparse and provides only local information: boreholes (Le Borgne et al., 2006)

∙ Coarse resolution at continental scales: extrapolation (Gleeson et al., 2014)

How to characterize the subsurface ?



Springs

Topographic

depression

Kløve et al., 2011,
from Fetter, 2001

Watertable

Seepage areas

Objectives

Need predictive model for ungauged basins (Blöschl et al., 2019) 

representing processes at the hillslope/catchment scale (Fan et al., 2019)

Can we gain insights into groundwater 
flow paths from hydrographic network 

and residence times at springs?

Hydrographic network (streams/wetlands)
Residence time

How to characterize the subsurface ?



Study site
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Calibration methodology workflow

How to assess bedrock heterogeneity at the catchment scale?
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Optimization of K from the hydrographic network

Optimization of θ from the residence times
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Distribution of groundwater
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Optimization of K from the stream network

Matching
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Estimation results of K
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Optimization of θ from the residence times

--> K value estimated

Exploration of θ
10 values  [0.3 to 30 %]
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Estimation results of θ

K = 2.2 x 10-6 m/s d = 20 m θ = 4 % 
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Estimation results of θ
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Model representation + measurement sampling

Complexity of the landscape
Lithological bedrock, surface formations

Geomorphological landslides, scree

Hydrographical wetlands, peat bogs

CFC-based dating methods (tsim) 

Insight about the geometry of groundwater flow paths

K = 2.2 x 10-6 m/s d = 20 m θ = 4 % 
Best RMSE
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Conclusions

• Model parametrization: need to define regional-scale hydraulic properties and aquifer geometries 
that properly capture the processes occurring at the hillslope scale

• Opportunity to assess relevant hydraulic properties and K e-folding depth solely based on surface information

• Definition of geomorphic scenarios in which vertical heterogeneity is a key driver in the emergence 
of springs and induced residence times 

Map of the hydrographic network

- estimation of the groundwater storage capacity
- insight about the spatial distribution and 

geometry of groundwater flow paths

- alternative method for characterizing ungauged basins
- leverage in crowdsourcing and current innovations in 

remote sensing

Groundwater apparent ages

unconfined aquifers with
subsurface-surface interactions
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Estimation results of θ

For all the seepage areas 
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• The groundwater storage capacity controls the residence times
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• The spatial distribution of apparent GW age differs strongly among aquifer models
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