Effect of olivine anisotropic viscosity in advancing and retreating subduction settings
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Introduction

Lattice preferred orientation (LPO) of olivine crystals occurs due to deformation in the mantle and
laboratory experiments have shown that such textures induce anisotropic viscosity in olivine
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e The effective viscosity starts to differ when the principal stresses increases e The largest principal stress is perpendicular to the mean a-axis orientation and
T =10 Myr | Advance | Retreat and becomes more aligned with mean olivine a-axis direction, the effective viscosity predicted by MDM+AV shows a hardened effect.

e D-Rex texture is stronger compared to MDM and MDM+AV textures. e MDM and MDM+AV predicts a more girdle-like texture while D-Rex predicts a
----- more point-like texture.

T =30 Myr Advance Retreat Subduction with retreating trench
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L. <105 <105 <106 ©106 ool Princi | x10° x10° x10° x108 %108 x108 . . . .
Principal 3 410 * b . ? . Sm 2 ? Texture comparison 3D subduction models using ASPECT (D-Rex) clpa . s v i v i —t, Y : v . and Matlab (MDM with and without AV) of particle id29
""" stresses - *‘az 2 e %1 - ‘ﬁ?l 2 oe .._%; ) ,107415&:; and Matlab (MDM with and without AV) of particle id0 stresses a 5’;%2 [0 <10° '%FL to “10° %‘F to v “7%— [0 o “ﬁ;[o <108 %|o Poinfiness a-axes
& 1
§! : H 1 ﬂ % §] 5 H [ Pointiness a-axes % -21. —s Hl — s 8 —— ’ -?]. =1 -?1.1 — 11 — . go ooooooofmw
z T T T T T T T T = T T T T T T o o® - . - . = ) =1 ¢ S g 1 S g 1 | 0 ©000¢
5 0 5 5 0 5 50 5 50 s 505 00 %10 %10 %10 %10 %10 %10 0.6 8 e 8 8 © oooom
) 10 %10 %10 %10 %10 0.6 cooc“ r in > [0 6] 8 o © 00 €8S
strain —> 0co0g® 8 o 00000y i stra 0 0.56276 1.0959 1.6212 2.1745 2.7787 04 © g S ? o0 ®?®
0'4y685 l.(‘){04 1.5332 1‘9397 2.5;127 15 0.4 o © e o © = © 4 00 V{08 3¢ Y, Y. Y Y. Y. 15 g 8 ®
D-Rex .\ \ 0.2 o © o o 0°” D-Rex 021 0 8
’ o0 o © & e i
00 g X 0 I I ! ! | |
X % .X i gWSiaRemt, » o 8 ' ' ' ' 0 05 1 15 2 25 3
0 0.5 1 15 2 25 3 .
T =40 Myr Advance Retreat s Cirdisness #-axes i Gn;jdlgnoesos s-gx;:s
' ' 2T e © P ©0004dee . . . ! ! 10 5 ®%e0
0.4{585 1.5332 1.9397 2.5{}27 10 > S o o o - 5 © ©00ooseanyy 05?(276 10359 16\?12 2.1745 2A7E7 8 8 o o ®0 4 . OOOOJCOOQEXHD
0.4r - e g, © 0q. 2% o 0® o890,
MDM L L ST iy MDM 0.2 g o © o ©® o 0o Y
0® © ’Oo(% x X X L7
X X X 02 —» oqPe w °
8o
e C]
2 L g I I | I I ]
O‘ 1 1 1 1 1 1 0
0 0.5 1 15 2 25 3 . 0 0.5 1 1.5 2 25 3
5 0.56276 1.0959 1.6212 2.1745 2.7787
0.4685 1.004 1.5232 1.9897 2.5427 03 Mindex b Y. Y Y Y. 5% 0s Mindex
MDM+AV || ¥ #sgest (s MDM+AV o asPECT ) o o Q000D
02 |2 Matlab MDM [o) 8 ®® o X X X L Matlab: MDM @ © 0 o OOOOCC@W
@ X X ©  Matlab: MDM + AV e © 9\ 6] e ‘;\'\,\,uﬂ ©  Matlab: MDM + AV o @) ° © o © ¢
i ; : ®® OOO 0.2 o °° 02 o0 OOQOOOOW
viscosity viscosity 0.1} . . 3o . R g 888°°
1.0e+19 1e+20 le+21 le+22 le+23 1.0e+2 1.0e+19 1e+20 le+2] le+22 le+23 1.0e+24 0 alesee ® 0 ° o ©
[ ‘ | | I l O“.‘-.—Q 6 0 © 1 I 1 I | .. . . 8
‘ ‘ H I I I | I I
w - w 0 05 1 15 2 25 3 Figure 13. Texture of one olivine particle from the mantle wedge area in 03—0 8

Figure 9. Texture of one olivine particle from the sub-slab area in the

0.5 1 1.5 2 2.5 3

subduction model with a retreating trench plotted with increasing Aeslmulated staln the subduction model with a retreating trench plotted with increasing Accumulated strain
Figure 4. Cross sections taken from the middle of the subduction models showing the viscosity (Pa s) )in log scale. accumulated strain predicted by D-Rex, MDM and MDM+AV. The Figure 10. Texture scores (pointiness, girdleness ac_cumu:atted stralr;thpredulcte? db); I_D-Rexr,] MDM tand MDM+AV.  The Figure 14. Texture scores (pointiness, girdleness
Two particles that are analysed are represented by the spheres and their displacement is tracked by the path line. The principal stresses at the selected strain is shown on top. and m-index) of this particle. principal stresses at the selected strain IS shown on top. and m-index) of this particle.

sub-slab particle (particle 0 from both models) is white and the mantle wedge particle (particle 48 and particle 29 from
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e In the subduction model with a retreating trench, texture predicted by MDM+AV is stronger randomness scores that are calculated from the eigenvalues of the orientations.

than from the subduction model with an advancing trench.
e In all these models, one particle is not representative enough and analysis will benefit from
having more particles scattered in the domain of interest.

randomness scores that are calculated from the eigenvalues of the orientations.

e Similarly, as a strong point-like texture develop, deformation in this direction
becomes easier, as is reflected in the decrease in the effective viscosity
predicted by MDM+AV.

e MDM+AV over-predicts the weakening effect due to anisotropic viscosity.

e In this subduction model with a retreating trench, MDM+AV predicts a more
point-like texture compared to using the other methods.
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