1. Problem: - Norway's electricity demand is increasing, so generation has to keep up

- Hydropower supplies > 90 % of the demand but is not expected to cover all additional capacity needed

2. Method: - Power system model for 2030 with 40 scenarios - varying: * weather (year) * onshore wind deployment * solar deployment

Where will the Norwegian wind power go? Comparison of generation and transmission expansion scenarios.

Maximilian ROITHNER, James PRICE, Johannes SCHMIDT, and Marianne ZEYRINGER

Yearly weather variations strongly impact power system costs and design - even when restricting expansion by land use constraints.

For details on scenarios see Paola Velasco Herrejón's poster "A methodology" for integrating social and environmental factors into energy system modelling (ESM)" @ ERE2.2 vHall | ERE | vERE.8)

3. Assumptions: - No offshore wind - No transmission expansion - No export - Carbon intensity limited to current values - Very expensive imports (last resort)

4. Results: - Large onshore wind deployment is cheapest - Wind restrictions lead to ambitious solar deployment - Total system costs are mainly determined by the weather year