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• Urban areas produce ~ 70 % of anthropogenic CO2 emissions [1]

• Provide a basis for tracking the effectiveness of emission 
reduction policies

Motivation

Evaluation of nine years of continuous δ13CO2 measurements in Heidelberg, Germany

• Continuous [12CO2] and [13CO2] measurements since 2014 from inlet 30 m above street level

• Cavity ring-down spectrometer (CRDS, Picarro model G2201-i) with drying system

• Single point calibration with interpolated values of known standards
measured every 5 hours

• Calibration gases were analysed at MPI for Biogeochemistry in Jena 
for δ13CO2 to link our measurements to the VPDB isotope scale

• Target mixtures measured to test long-term stability of measurements

Ambient Air Measurements

Laboratory Setup: [2] Moving Keeling/Miller-Tans Plot Method

• 5 hour moving windows, using hour-averaged values

• Filter Conditions [4]:

 ≥ 5 ppm [CO2] total increase

 Monotonous [CO2] increase

 < 2 ‰ uncertainty in Miller-Tans Slope

 Reduced χ2 < 10; R2 > 0.75 

Years Target in Use Mean [CO2] ± SD [ppm] Mean δ13CO2 ± SD [‰]

2014 - 2018 484.5 ± 0.1 -11.0 ± 0.1

2019 - 2020 381.7 ± 0.1 -8.8 ± 0.1

2021 - 2023 366.42 ± 0.08 -8.7 ± 0.2

𝑅13 =
[13CO2]

[12CO2]
, 𝛿𝑐 =

𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑉𝑃𝐷𝐵
− 1 ∙ 1000‰

𝑐𝑜𝑏𝑠 = 𝑐𝑏𝑔 + 𝑐𝑠 ,  𝑐 = [CO2]

𝛿𝑐𝑜𝑏𝑠 ∙ 𝑐𝑜𝑏𝑠 = 𝛿𝑐𝑏𝑔 ∙ 𝑐𝑏𝑔 + 𝛿𝑐𝑠 ∙ 𝑐𝑠

𝛿𝑐𝑜𝑏𝑠 ∙ 𝑐𝑜𝑏𝑠 = 𝛿𝑐𝑠 ∙ 𝑐𝑜𝑏𝑠 + 𝑐𝑏𝑔 𝛿𝑐𝑏𝑔 − 𝛿𝑐𝑠
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• Collaborate with CO2 modellers to better 

identify contributions from local sources

• Compare with local and regional emission 

estimates to test their accuracy

• Use as a baseline to check the effectiveness of 

emission reduction policies

Outlook and Next Steps
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Comparison with Wind Direction and Wind Speed
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Nine Year Time Series 

• Daily and monthly means of   
minutely values shown

• [CO2] background values from Mace  
Head (MHD) station, Ireland shown 
alongside for comparison [3]

• Seasonal [CO2] cycle similar to and 
slightly ahead of background cycle

• δ13CO2 values relative to VPDB scale

• δ13CO2 and [CO2] are quite strongly 
anticorrelated (Pearson‘s R2 = 0.89)

• Significant increase of                        
2.32 ± 0.03 ppm yr-1 for [CO2]

• No significant overall trend for 
δ13CO2

• Long term trend subtracted and mean 
values added to calculate the annual 
and diurnal cycles

• Significant annual cycles for [CO2], 
δ13CO2, and the source δ13CO2

• Significant diurnal cycles for [CO2] and 
δ13CO2 for all seasons

• Amplitude of [CO2] and δ13CO2 diurnal 
cycles greatest in summer

• Limited daytime source δ13CO2 values 
due to daytime CO2 sink

• More source δ13CO2 values obtained 
in summer and spring due to stronger 
[CO2] diurnal cycle

• CRDS located at 
Institute for 
Environmental Physics 
(IUP)

• Strong easterlies from 
Neckar Valley

• Enriched Isotope values 
likely from HD Materials

• Depleted values likely 
from natural gas 
combustion

Google Earth 7.3.6, (2023) Heidelberg, 
Germany. 49°25'2.38"N, 8°40'28.12"E. Image 

Landsat / Copernicus
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