

Extraction of fluids to mitigate the seismic risk associated with post-injection aseismic slip

Alexis Sáez¹, Brice Lecampion¹

¹École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

EGU23, Vienna, Austria

April 27th, 2023

EPFL Why?

- Not rare that the largest earthquakes of injection-induced seismic sequences occur after shut-in
- Some examples:
 - 2006 $M_L > 3$ Basel earthquakes, Switzerland (EGS) [shutdown]
 - 2017 $M_W = 5.5$ Pohang earthquake, South Korea (EGS) [shutdown]
- Quite problematic since shutting off the well "is meant" to decrease the seismicity potential

EPFL Triggering mechanisms

$$\Delta CS = \underline{\Delta \tau} - f \cdot (\underline{\Delta \sigma} - \underline{\Delta p})$$

- Pore-pressure increase
- Poroelastic stress changes

(e.g., Parotidis *et al.*, GRL, 2004) (e.g., Segall and Lu, JGR, 2015)

EPFL Aseismic-slip stress transfer

Slip: mostly aseismic

[Cornet et al., 1994,1997; Guglielmi et al., 2015; and many others]

EPFL Triggering mechanisms

$$\Delta CS = \frac{\Delta \tau}{\uparrow} - f \cdot (\frac{\Delta \sigma}{\uparrow} - \frac{\Delta p}{\uparrow})$$

- Pore-pressure increase
- Poroelastic stress changes
- Aseismic-slip stress transfer

PROCEEDINGS A

royalsocietypublishing.org/journal/rspa

Post-injection aseismic slip as a mechanism for the delayed triggering of seismicity

Alexis Sáez and Brice Lecampion

Accepted for publication

EPFL 3D Physical model

Coupled (solid-fluid) initial boundary value problem

$$\tau(x, y, t) = \tau_0 + \int_{\Gamma} K(x - \xi, y - \zeta; \mu, \nu) \delta(x, y, t) d\xi d\zeta$$

$$|\tau(x, y, t)| \le \tau_{strength} = f(\sigma'_0 - \Delta p(r, t))$$

$$\frac{\partial p(r,t)}{\partial t} - \alpha \nabla^2 p(r,t) = 0 \qquad \lim_{r \to 0} 2\pi r \frac{k}{\eta} w \frac{\partial p}{\partial r} = -Q(t)$$
$$\lim_{r \to 0} n(r,t) = n$$

 $\lim_{r \to \infty} p(r, t) = p_0$

6

Alexis Sáez

EPFL 3D Physical model

Coupled (solid-fluid) initial boundary value problem

- Quasi-static elasticity
- Coulomb's friction
- Mass conservation + Darcy's law along the fracture/fault

EPFL During-injection versus after-injection response

During injection – Crack-like

After injection – Pulse-like

Sáez and Lecampion, 2023, PRSA.

EPFL Arrest time and maximum run-out distance

$$\boxed{\frac{t_a}{t_s} = g(T)}$$

$$\boxed{\frac{R_a}{R_s} = h(T)}$$

Stress-injection parameter *T*: (Bhattacharya & Viesca, 2019; Sáez *et al.*, 2022)

$$T = \frac{f\sigma'_0 - \tau_0}{f\Delta p_*} \equiv \frac{\text{Closeness to failure}}{\propto \text{ intensity of fluid injection}}$$

(regimes found first by Garagash & Germanovich, 2012)

Alexis Sáez

EPFL Arrest time and maximum run-out distance

Applications

EPFL The 1993 hydraulic stimulation at Soultz, France

EPFL The 2013 hydraulic stimulation at Rittershoffen, France

Extraction of fluids

EPFL Extraction of fluids

EPFL Extraction of fluids

EPFL Arrest time and maximum run-out distance

EPFL Arrest time

EPFL Arrest time

EPFL Maximum run-out distance

EPFL Summary

- A slip pulse propagates after shut-in and may keep triggering seismicity due to stress transfer.
- A small amount of extraction significantly reduces the time and rock volume exposed to post-injection seismicity.
- There is a remaining risk that cannot be avoided even with large rates of extraction.

EPFL Thanks!

