Accurate Earthquake Locations of the Adriatic Thrust Fault of the 2021

 Seismic Sequence with sP Depth Phases.Raffaele Di Stefano ${ }^{1}$, Maria Grazia Ciaccio ${ }^{1}$, Paola Baccheschi ${ }^{1}$, Dapeng Zhao ${ }^{2}$

EGU23-15881 ${ }^{2}$ Department of Geophysics, Graduate Schzonale di Geofisica e Vulcanologia (Italy)

What makes earthquake's location unstable?

a-priori issues (network geometry) Closest station epicentral distance > 30km Azimuthal gap $>180^{\circ}$

a-posteriori issues (modeling)

misidentification of arrivals, ray-tracing, seismic velocity mode

Distance of the closest station is proved to be the worst issue especially against the hypocenter's depth
tandard solution to mitigate: installing as many stations as possible to always have a station "on top" of the event. In off-shore conditions, this is a hard-to-achieve result.

Depth Phases

later arrivals pP, sP, sS upgoing--> reflected --> downgoing From Zhao et al., 2015 The use of a depth-phase datum in earthquake location is just like installing a new seismic station close to the epi center (at the bouncing point (BP, Fig. 1a,b) on the Earth's surface or seafloor)

sP Depth Phase at local distance key-points

P-onset Identification points
found and/or better visible at $\Delta \geq 90-150 \mathrm{~km}$
stronger signal on vertical-component
sP-P $\delta t \sim$ constant independent of station Δ or azimuth particle motion is quite comparable to a P -wave

Modeling points

s to P conversion at the BP is influenced by:

- sediments' thickness and velocity
- surface topography/bathymetry sP peculiar ray-path must be accurately modeled

The 2021 Seismic Sequence

An earthquake sequence occurred in the Central Adriatic region (Italy-Croatia) starting on 27th March 2021 with a mainshock of Mw 5.2 No foreshock was observed before this mainshock.

The epicenters occurred in the open sea, approximately 80 km from the Garga tely 80 km from the Gargano promontory and 40 km Lastovo, between the 2003 Jabuka seismic sequence (northwest), and the 1988 Palagruza seismic sequence (southeast).
This mainshock was felt in many central-southern Italian regions, from Ancona to Foggia, and in Central Dalmatia.

Di Stefano et al., 2011 https://doi.org/10.1029/2011 GC003649

According to our locations (70 earthquakes with, $\mathrm{M} \geq 2.9$, hypocenters constrained with P, S, and sP stations D $\leq 300 \mathrm{~km}$ (Independent from the GAP):
摂 the 2021 central Adriatic seismic sequence occurred along the Mid Adriatic Fault (MAF)
the MAF is northeast-dipping thrust fault of the Dinaric front
its dip is between 35° and 45° (comparable to moment tensors's dispersion, Fig. 2a)
it is ocated parallel to, and between the, 2003 Jabuka and 1988 Palagruza seismic sequences
the fault plane was ctivated from near-surface depths to a depth of approximately 20 km
the mainshock is located approximately in the middle of the fault

- the MAF is urrounded by uprising halokinetic structures thus confirming the correlation between such structures and the tectonic regime of this area

Workflow for off-shore earthquakes locations with sP

- Waveforms download within 300 km distance from INGV location
- Picking P- and S-onsets on three components and
"stacking" visualization of vertical components only, aligned along P-onsets (Fig. 3a)
- sP possible identification on 1 to 3 (only best signals)
final check with particle motion (Fig. 3b)
For each event, $\mathrm{P}-$, S -, and sP-arrivals are inverted with the on-purpose designed code by Zhao et al. (2007, 2011), in the a-priori detailed setup (Fig. 2b) for a new location (Fig. 3c).

Fig. $3 a \sqrt{4} 4$.

