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CubeSats are a versatile and cost-effective solution for The Spire leoAtt files contain the attitude of the satellites
space applications. Commercial off-the-shelf components (i.e., as quaternions representing the rotation from satellite
have been used to design CubeSat constellations, including body frame to the local orbit frame). These quaternions
for GNSS-RO. The use of GNSS signals is routinely used for should be used along with processing the simulated star
orbit determination of LEO CubeSats and has been enabled camera measurements. It is crucial to apply them correctly
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kinematic orbits of the Spire GNSS-RO CubeSats and
discussed the validations and limitations of the method.
Our analysis demonstrated good agreement between the

solves phase ambiguity to enhance the accuracy of orbit
determination (Figure 6).
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constellations in August 2021 are shown in Figure 1.
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Fig 1. 3D RMS of comparison of in-house processed GNSS orbits and final Repro3 orbits processed at CODE Fig 5. ACVs for Spire FM099 satellite by analyzing one month of data for phase L1/L2 (left), code P1 and P2 Mayer-Guerr, T., Behzadpour, S., Eicker, A., Ellmer, M., Koch, B., Krauss, S.,
for GPS constellation (left) and Galileo (right) in August 2021. observations (middle and right). The estimated patterns show a significant difference from"the ground Pock, C., Rieser, D., Strasser, S., Suesser-Rechberger, B., Zehentner, N., Kvas, A.

calibrations for the code observations (both P1 and P2). The variation for phase measurements and code
measurements are in the range of 4 mm and +10 cm, respectively.
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