

(supplementary material)

Marco Fazio & Martin Sauter

EGU, Coupled thermo-hydro-mechanical-chemical (THMC) processes in

geological media, 24.04.2023, Vienna

Angewandte Geologie

Homogeneity at the block scale

Sample #	1T	2N	3E
т _д (g)	3830.05	3842.94	3845.14
l (mm)	250.28	250.6	250.36
Ø (mm)	99.12	99.17	99.31
$\rho_d (g/cm^3)$	1.98	1.99	1.98
n (%)	24.34	24.36	24.38

Angewandte Geologie

Effect of shear deformation

High shear deformation levels

decrease the permeability

Angewandte Geologie

BS chosen for

Angewandte Geologie

Darcy's law

μ calculated through Korson et al. (1969)
equation and Schmelzer et al. (2005)
tabulated values

Angewandte Geologie

······ Linear (Bottom)

······ Linear (Top)

Bottom

Тор

Flow rate & pressure drop

sign) flow rate at each end of the samples

Angewandte Geologie

Porosity measurement

For each σ_3 or σ_{diff} increase, both top and bottom pore volume were monitored before and after the step, at constant pore pressure.

Angewandte Geologie

Effect of σ_3 on Porosity

Porosity evolution through pore volume changes (only with $\uparrow \downarrow \sigma_3$)

- n decreases non uniformly with $\uparrow \sigma_3$ and does not fully recover after unloading cycle \rightarrow loss of pore space
- $\rho = 1.98 \text{ kg/m}^3 \rightarrow 80 \text{ MPa corresponds to depth > 4 km}$
- 2.9% loss of porosity, but still highly porous

Angewandte Geologie

Depth simulations

F to bedding planes

// to bedding planes

