Sample Uncertainty Analysis of Daily Flood Quantiles Using a Weather Generator G. Vignes^(1,2) (gvignes@upv.es), C. Beneyto⁽¹⁾ (carbeib@alumni.upv.es), J.A. Aranda⁽¹⁾ (jaranda@upv.es) and F. Francés⁽¹⁾ (ffrances@upv.es)

1. INTRODUCTION

The problem: short length of available observations.

Synthetic Continuous Simulation:

Stochastic Weather Generator (WG) + Hydrological model (HM): Stochastic generation of continuous synthetic precipitation (P) series and stochastic generation of continuous synthetic discharges (Q).

I ❖ Pros:

- Cons: Continuous long series of meteorological data with similar statistical properties as those of observed data \rightarrow Initial soil moisture content
- Parametric WG \rightarrow different weather scenarios can be simulated
- \blacktriangleright Multi-site WG \rightarrow spatio-temporal variability

2. SYNTHETIC CASE STUDY

Nine Synthetic populations: Mediterranean Semi-arid, Humid and Extremely Humid climate according to De Martonne Aridity Index $(I_a)_{[1]}$, each one with three different climate extremality ($\xi = 0.05$; $\xi = 0.11$; $\xi = 0.25$).

model

Variable	Statistic	MEDITERRANEAN SEMI-ARID ($\overline{I_a}$ =21,6)			HUMID (<i>l</i> _{<i>a</i>} =33,8)			EXTREMELY HUMID	
		ξ = 0.05	ξ = 0.11	ξ = 0.25	ξ = 0.05	ξ = 0.11	ξ = 0.25	ξ = 0.05	ξ = 0.11
Daily P	% D _p > 0	24.79	24.79	24.79	31.11	31.34	31.91	57.95	57.95
Annual P	Mean	572.46	572.62	569.76	748.94	748.91	748.23	1313.27	1315.27
Annual max Daily P	Mean	59.56	62.96	70.77	47.61	50.88	60.88	53.51	58.07
	CV	0.43	0.48	0.67	0.33	0.39	0.60	0.31	0.36
	Coeff. Skewness	1.55	2.02	3.53	1.36	1.75	4.53	1.41	1.81
	Coeff. Kurtosis	7.25	10.68	27.61	6.25	8.62	52.26	6.91	9.54

For the sake of simplicity, basin characteristics are obtained from an existing study. Drainage area: 180 km^2 approx. Two different hydrological characteristics of the basin were analyzed, reproducing an ephemeral and a permanent regime.

> Ephemeral regime (70% overland flow, 30% interflow, 0% base flow)

> Permanent regime(30% overland flow, 40% interflow, 30% base flow)

Results for permanent regime are not shown since non-significant changes were detected.

3. METHODOLOGY

Generation of a very long TETIS [4] GWEX [2] (15,000 years) daily synthetic P population Multi-site WG of daily P and I I > Integral HM max and min Temp, focused Conceptual (tank structure) on extreme events For $1 \le i \le 50$ (packages) model with physically sample *i* of 60 years of Precipitation amounts: based parameters "observed" daily P **Extended Generalized I I ≻ Distributed** in space Pareto Distribution (E-GPD)[3] > Incorporates a **Estimation of GWEX** $1-\left(1+\frac{\xi x}{2}\right)$ parsimonious split $F(x;\lambda) =$ parameters for sample *i* effective parameter $\sigma \rightarrow \text{Scale}$ structure Generation of 5000 Parametei ξ = 0.10 $\kappa \rightarrow \text{Transf.}$ years of P for sample *i* ξ = 0.2 Parameter \rightarrow Shape Parameter (directly affecting the Return Period (Years) upper tail) Parameter ξ is estimated with the regional P_{10} $RRMSE(\hat{X}_{T})$

UNIVERSITAT

POLITÈCNICA

DE VALÈNCIA

- \succ If sub-daily \rightarrow complexity and high computational requirements
- Adequacy of hydrological model

Adequacy of the meteorological

(1) Research Group of Hydrological and Environmental Modelling (GIHMA), Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Valencia, Spain (2) Departament of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum – University of Bologna, Bologna, Italy

Instituto de Ingeniería del Agua y Medio Ambiente

MINISTERIO **DE ECONOMIA** Y COMPETITIVIDAD

