EGU23-1629

Loading kappa-type distributions in particle simulations

Seiji ZENITANI

RCUSS, Kobe University, JAPAN IWF, Austrian Academy of Sciences, AUSTRIA

Shin'ya Nakano

Institute of Statistical Mathematics, JAPAN

CIVE SPACE RESEARCH INSTITUTE

Velocity distributions in particle simulations

Maxwell-Boltznmann distribution

$$f(\boldsymbol{v})d^{3}\boldsymbol{v} = N\left(\frac{m}{2\pi T}\right)^{\frac{3}{2}} \exp\left(-\frac{mv^{2}}{2T}\right)d^{3}\boldsymbol{v}$$

• Two uniform random variates: $u_1, w_1 \in (0,1]$

$$r_1 = \sqrt{-2\ln u_1} \sin(2\pi w_1)$$
$$r_2 = \sqrt{-2\ln u_1} \cos(2\pi w_1)$$

Counts Counts O Velocity V_×

Kappa distribution

$$f(\boldsymbol{v})d^3\boldsymbol{v} = \frac{N}{(\pi\kappa\theta^2)^{3/2}} \frac{\Gamma(\kappa+1)}{\Gamma(\kappa-1/2)} \left(1 + \frac{v^2}{\kappa\theta^2}\right)^{-(\kappa+1)} d^3\boldsymbol{v}$$

- First introduced in 1968 (Vasyliunas 1968, Olbert 1968)
- Widely used in a solar-wind plasma with suprathermal ions
- Thermal core + power-law tail
- κ (> 3/2) : power-law index
- $\kappa \to \infty$ Maxwellian

Recipe for a Kappa distribution

 Kappa distribution is equivalent to a multivariate-t distribution (Abdul & Mace 2015)

$$\frac{N}{\nu^{p/2}\pi^{p/2}\sigma^p}\frac{\Gamma[(\nu+p)/2]}{\Gamma(\nu/2)}\left(1+\frac{1}{\nu}\frac{t^2}{\sigma^2}\right)^{-\frac{(\nu+p)}{2}}$$

• Step 1

- Load the 3-D normal distribution
- Step 2
 - Load a chi-squared distribution of ν degrees of freedom (Equivalent to a gamma distribution with k=κ-1/2)
- Step 3
 - Divide 1 by 2

Algorithm 1-2

generate $n_1, n_2, n_3 \sim \mathcal{N}(0, 1)$ generate $\chi^2_{\nu} \sim \text{Ga}(\kappa - 1/2, 2)$ $r \leftarrow \sqrt{\frac{\kappa \theta^2}{\chi^2_{\nu}}}$ $v_x \leftarrow rn_1$ $v_y \leftarrow rn_2$ $v_z \leftarrow rn_3$

Algorithm A

function Gamma-generator (k, λ) generate uniform random $U_1, U_2, \dots, U_{[k]} \in (0, 1]$ if k is an integer then $x \leftarrow -\ln \left(\prod_{i=1}^{k} U_i\right)$ elseif k is a half integer then generate $n \sim \mathcal{N}(0, 1)$ $x \leftarrow -\ln \left(\prod_{i=1}^{[k]} U_i\right) + \frac{1}{2}n^2$ endif return λx

Monte-Carlo (PIC) results: k=3.5

- Power-law tail of ~v**(2κ), ~E**(κ+1/2)
- It extends well beyond the inscribed Maxwellian

Kappa loss-cone (KLC) distribution

- Kappa distribution with an approximated loss-cone (Summers & Thorne 1991)
- Useful for study in the inner magnetosphere

$$f(\boldsymbol{v}) = \frac{N}{\pi^{3/2} \theta_{\parallel} \theta_{\perp}^2 \kappa^{j+3/2}} \frac{\Gamma(\kappa+j+1)}{\Gamma(j+1)\Gamma(\kappa-1/2)} \left(\frac{v_{\perp}}{\theta_{\perp}} \right)^{2j} \left(1 + \frac{v_{\parallel}^2}{\kappa \theta_{\parallel}^2} + \frac{v_{\perp}^2}{\kappa \theta_{\perp}^2} \right)^{-(\kappa+j+1)}$$

Kappa loss-cone (KLC) distribution

 As results of lengthy calculation, we have developed two procedures at this point.

 $\nu \leftarrow 2\kappa - 1$ $X \leftarrow N(1,0)$ $Y \leftarrow \text{Gamma}(\nu/2,2)$ $R \leftarrow (1 + X^2/Y) \frac{\text{Gamma}(j+1,1)}{\text{Gamma}(\kappa,1)}$ $\bar{v}_x \leftarrow \theta_{\parallel}\sqrt{\kappa} X/\sqrt{Y}$ $\bar{v}_y \leftarrow \theta_{\perp}\sqrt{\kappa R} \sin(2\pi w_2)$ $\bar{v}_z \leftarrow \theta_{\perp}\sqrt{\kappa R} \cos(2\pi w_2)$ return v_x, v_y, v_z

function $Gamma(k, \lambda)$

 ${\bf if}\;k$ is a half integer ${\bf then}$

generate uniform random $U_1, U_2, \cdots, U_{k-1/2} \in (0, 1], u_1, u_2 \in (0, 1]$ $X \leftarrow -2\lambda \left\{ \ln \left(\prod_{i=1}^{k-1/2} U_i \right) + \cos^2(2\pi u_1) \ln u_2 \right\}$

 $\mathbf{elseif}\;k$ is an integer \mathbf{then}

generate uniform random $U_1, U_2, \cdots, U_k \in (0, 1]$

$$X \leftarrow -2\lambda \ln\left(\prod_{i=1}^k U_i\right)$$

 \mathbf{endif}

return X

 $X \leftarrow N(1,0)$

$$Y \leftarrow \text{Gamma}(\mu/2, 2)$$

$$R \leftarrow \frac{\text{Gamma}(j+1, 1)}{\text{Gamma}(\kappa - 1/2, 1)}$$

$$\bar{v}_x \leftarrow \theta_{\parallel} \sqrt{\kappa} X \sqrt{\frac{(1+R)}{Y}}$$

$$\bar{v}_y \leftarrow \theta_{\perp} \sqrt{\kappa R} \sin(2\pi w_2)$$

$$\bar{v}_z \leftarrow \theta_{\perp} \sqrt{\kappa R} \cos(2\pi w_2)$$
return v_x, v_y, v_z

function Gamma (k, λ) if k is a half integer then generate uniform random $U_1, U_2, \dots, U_{k-1/2} \in (0, 1], u_1, u_2 \in (0, 1]$ $X \leftarrow -2\lambda \left\{ \ln \left(\prod_{i=1}^{k-1/2} U_i \right) + \cos^2(2\pi u_1) \ln u_2 \right\}$

elseif k is an integer then

generate uniform random $U_1, U_2, \cdots, U_k \in (0, 1]$

$$X \leftarrow -2\lambda \ln \left(\prod_{i=1}^k U_i\right)$$

 \mathbf{endif}

return X

Relativistic Kappa distribution

Kappa distribution

$$f(\boldsymbol{v})d^3\boldsymbol{v} = \frac{N}{(\pi\kappa\theta^2)^{3/2}} \frac{\Gamma(\kappa+1)}{\Gamma(\kappa-1/2)} \left(1 + \frac{v^2}{\kappa\theta^2}\right)^{-(\kappa+1)} d^3\boldsymbol{v}$$

$$f_{\rm RK}(\boldsymbol{p})d^3p \equiv A\left(1 + \frac{(\gamma - 1)mc^2}{\kappa T_{\kappa}}\right)^{-(\kappa + 1)} d^3p$$

$$p = m\gamma v$$
 $\gamma = [1 - (v/c)^2]^{-1/2}$

- Useful for study in high-energy astrophysics & particle physics
- Previous "power-law" models often assume a sudden low-energy cutoff

Some mathematics

Normalization factors

Relativistic Kappa distribution

$$f_{\rm RK}(p)dp = A(\kappa,t) \left(1 + \frac{\gamma - 1}{\kappa t}\right)^{-(\kappa+1)} 4\pi p^2 \ dp$$

$$x \equiv \frac{\mathcal{E}_{\rm kin}}{mc^2} = \gamma - 1$$

- $$\begin{split} A(\kappa, T_{\kappa}) &= \frac{N_{\kappa} \Gamma\left(\kappa + \frac{1}{2}\right)}{(2\pi m \kappa T_{\kappa})^{3/2} (\kappa + 1) \ \Gamma(\kappa 2) \ _{2}F_{1} \left(-\frac{3}{2}, \frac{5}{2}; \kappa + \frac{1}{2}; 1 \frac{\kappa T_{\kappa}}{2mc^{2}}\right)} \\ S(\kappa, t) &\equiv \frac{\sqrt{2\pi}}{2} \Gamma\left(\kappa \frac{1}{2}\right) + a \sqrt{\kappa t} \ \Gamma(\kappa 1) + b \ \frac{3\sqrt{2\pi}}{4} (\kappa t) \ \left(\kappa \frac{3}{2}\right) + 2(\kappa t)^{3/2} \ \Gamma(\kappa 2) \end{split}$$
- Our expression

$$f_{\rm RK}(x)dx = \frac{4\pi A(\kappa, t)S(\kappa, t)}{\Gamma(\kappa+1)} (\kappa t)^{3/2} \left(\sum_{i=3}^{6} \pi_i(\kappa, t) \operatorname{B}'\left(x; \frac{i}{2}, \kappa+1-\frac{i}{2}, 1, \kappa t\right)\right) R(x) dx$$

The algorithm

Main procedure

```
a \leftarrow 0.56, b \leftarrow 0.35, R_0 \leftarrow 0.95
compute \pi_3, \pi_4, \pi_5 for given \kappa, t using Eqs. (40)–(42)
repeat
                                          Probabilistic switch
   generate X_1, X_2 \sim U(0, 1)
         X_1 < \pi_3 then i \leftarrow 3
   if
   elseif X_1 < \pi_3 + \pi_4 then i \leftarrow 4
   elseif X_1 < \pi_3 + \pi_4 + \pi_5 then i \leftarrow 5
   else i \leftarrow 6
   endif
   generate X_3 \sim Ga(i/2, 1), X_4 \sim Ga(\kappa + 1 - i/2, 1)
   x \leftarrow \kappa t \times \frac{X_3}{X_4} Beta prime distribution
until X_2 < R_0 or X_2 < R(x; a, b)
                                                 Rejection
generate X_5, X_6 \sim U(0, 1)
p \leftarrow \sqrt{x(x+2)}
p_x \leftarrow p \ (2X_5 - 1)
p_y \leftarrow 2p\sqrt{X_5(1-X_5)}\cos(2\pi X_6)
p_z \leftarrow 2p\sqrt{X_5(1-X_5)}\sin(2\pi X_6)
```

 Beta prime distribution can be generated from 2 gamma distributions

$$X_{\mathrm{B}'(\alpha,\beta)} = \frac{X_{\Gamma(\alpha,\delta)}}{X_{\Gamma(\beta,\delta)}} = \frac{X_{\Gamma(\alpha,1)}}{X_{\Gamma(\beta,1)}}$$

- No need for the normalization factors
- Gamma variates can be easily generated

 Rejection function will be discussed in the last section

Numerical test

Zenitani & Nakano 2022

Acceptance efficiency (1/2)

 In the relativistic cases, we need a rejection method to adjust the distribution.

$$R(x; a, b) \equiv \frac{(1+x)\sqrt{x+2}}{\sqrt{2} + ax^{1/2} + b\sqrt{2}x + x^{3/2}}$$

- We have added two hyperparameters to a rejection function by Canfield+ (1987)
- Best hyperparameters are found by a grid-search

Zenitani & Nakano 2022

Acceptance efficiency (2/2)

- The new function improves efficiency for relativistic kappa distributions as well as Maxwell-Jüttner distributions (relativistic Maxwell distributions)
- Drastic improvement: 70% --> 95%

Summary

- 1. Kappa distribution <-- Multivariate-t distribution
- 2. Kappa loss-cone distribution <-- Lengthy calculation
- 3. Relativistic kappa distribution <-- Beta prime distributions
- 4. Efficient rejection function for relativistic distributions

• References:

- Zenitani & Nakano, *Phys. Plasmas* **29**, 113904 (2022) 3 & 4
- Zenitani & Nakano, *in prep*. 2 & loss-cone distributions