

EGU23-16511: Revisiting the low-gradient problem with weather-resolving atmosphereocean coupled simulations

Ran Feng¹, Mary Grace Albright¹, Bette Otto-Bliesner², Jiang Zhu²

1. Department of Earth Sciences, University of Connecticut

2. Climate and Global Dynamic Lab, National Center for Atmospheric Research

Warming in the mid-latitude Pacific

- Amplified warming in the Pacific mid-latitudes (e.g., Tierney et al., 2019)
- Remains difficult for the PlioMIP2 simulations to capture

SST anomalies (mid-Pliocene minus Preindustrial core top SSTs with U_{37}^{K}) Tierney et al., 2019 Pliocene Δ SST (°C) $(40 - 60^{\circ} N/S)$ minus 10°N – 10°S, Regional ΔSST_{T-M} 145°E to 200°E) 0 Unpublished, in prep -3 -2 proxy site ΔSST_{T-M}

Possible explanations, and added benefit from high resolution

- Perturbed ocean diffusivity (Fedorov et al., 2010, Sci.; Lohmann et al., 2022, P&P)
- Perturbed cloud albedo (Burls et al., 2014, P&P)
- Different moist processes and heat transport by the atmosphere?
 - high resolution may lead to different results?

Schlunzen et al., 2011

Modeling framework

- Community Earth System Model version 1.3
 - Adapted for high resolution simulations (25 km atmosphere and land, 10 km ocean) (Chang et al., 2020)
 - Applied for historical and future climate projections (Meehl et al., 2013; Chang et al, 2020, JAMES)
- Experiments and resolutions
 - HR: ~25 km atmosphere, land and ~100 km ocean
 - LR: ~100 km atmosphere, land and ~100 km ocean
 - Two experiments: HR and LR Pliocene
 - Initialized with Feng et al., (2020, JAMES)

Comparison between HR and LR and equilibration

- Comparison of HR Pliocene minus Pl, and LR Pliocene minus Pl
- HR: 100 yrs of PI (Rosenbloom at NCAR) and 60 yrs of the mid-Pliocene
 - The model reaches equilibrium quickly
 - Focus on the atmospheric responses
- LR: 500 yrs of PI (Jiang Zhu at NCAR) and 150 yrs of the mid-Pliocene

Does mid-Pliocene HR show more poleward amplified SST warming in the Pacific?

Possible role of atmospheric heat transport

- Response of wind and sea level pressure pattern consistent with the "Gill mode" (Gill, 1980)
- Anomalous wind divergence from the eastern tropical Pacific
 - Enhanced poleward heat transport from the region

Difference in SST warming pattern between HR and LR Difference in SLP and 850 hPa wind response pattern

Possible role of moist convection in the EEP

- Base PI state EEP SST is similar between HR and LR
- More pronounced low cloud reduction at high SSTs
- Greater increase in the resolved heavy precipitation with high SSTs

Preliminary findings:

- HR simulates more poleward amplified SST warming along the western Pacific
 - Enhanced EEP SST warming and meridional atmospheric heat transport
 - Better resolved moist convection may lead to greater low cloud reduction at high SSTs?

Thank you!

Contact: <u>ran.feng@uconn.edu</u>

Upcoming HR simulations (10 km ocean) for LGM, Pliocene, and Eocene (Contact: ottobli@ucar.edu)