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* flow oriented from right to left

« most important section of the channel is in the middle part of the ice channel, “test track® with

* velocity in the channel (top) clearest R-channel behavior

* kinematic pressure in the channel (bottom) « simulation and measurements only partially agree on pressure gradients and the resulting

hydraulic friction factor. However, the individual results are within the published range of
variability.

Fig. 2: Snapshot of the simulation animation. « velocity at exemplary cross sections (middle
circles, positions marked above)

Dat : The derived friction coefficients suggest that the laboratory experiment is a representation
dla processing . 01 02 03 o4 05 o0s 07 08 of the flow properties of an actual R-channel in glaciers. The experimental set up appears
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e N Data flow: to be a functional analogy of R-channels.
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Fig. 3: Visualization of the data flow. Upper green frame emphasizesthe analysis of the laboratory experiment
while the lower one is framing the process leading to the numerical simulation.
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